Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Recent Pat Nanotechnol ; 17(2): 159-164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34602048

RESUMO

BACKGROUND: The In2O3 nanowires have attracted enormous attention for gas sensor application due to their advantageous features. However, the controlled synthesis of In2O3 nanowires for gas sensors is vital and challenging because the gas sensing performance of the nanowires is strongly dependent on their characteristics. METHODS: Here in this patent, we fabricated In2O3 nanowires on SiO2/Si substrate via a simple thermal vapor deposition method with the Au thin film as the catalyst. The growth temperatures were controlled to obtain desired nanowires of small size. The grown In2O3 nanowires were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The ethanol gas sensing properties were tested under the dynamic flow of dry air and analytic gas. The synthesized In2O3 nanowires have the potential for use in ethanol gas sensor application. RESULTS: In2O3 nanostructures grown at different temperatures ranging from 600 to 900oC have different morphologies. The sample grown at 600oC had a morphology of nanowire, with a diameter of approximately 80 nm and a length of few micrometers. Nanowires grown at 600°C were composed of oxygen (O) and indium (In) elements, with the atomic ratio of [O]/[In] = 3/5. The nanowire was a single phase cubic structure of In2O3 crystal. The In2O3 nanowire sensor showed typical n-type semiconducting sensing properties. The response decreased from 130 to 75 at 100 ppm when the working temperature decreased from 450°C to 350°C. CONCLUSION: The nanowires grown at 600°C by the thermal vapor deposition method had the best morphology with a small diameter of about 80 nm and a length of few micrometers. The In2O3 nanowires had a good ability to sense ethanol at varying concentrations in the range of 20 ppm to 100 ppm. The In2O3 nanowires can be used as building blocks for future nanoscale gas sensors.

2.
ACS Appl Mater Interfaces ; 9(7): 6153-6162, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28121124

RESUMO

The length of single crystalline nanowires (NWs) offers a perfect pathway for electron transfer, while the small diameter of the NWs hampers thermal losses to tje environment, substrate, and metal electrodes. Therefore, Joule self-heating effect is nearly ideal for operating NW gas sensors at ultralow power consumption, without additional heaters. The realization of the self-heated NW sensors using the "pick and place" approach is complex, hardly reproducible, low yield, and not applicable for mass production. Here, we present the sensing capability of the self-heated networked SnO2 NWs effectively prepared by on-chip growth. Our developed self-heated sensors exhibit a good response of 25.6 to 2.5 ppm NO2 gas, while the response to 500 ppm H2, 100 ppm NH3, 100 ppm H2S, and 500 ppm C2H5OH is very low, indicating the good selectivity of the sensors to NO2 gas. Furthermore, the detection limit is very low, down to 82 parts-per-trillion. As-obtained sensing performance under self-heating mode is nearly identical to that under external heating mode. While the power consumption under self-heating mode is extremely low, around hundreds of microwatts, as scaled-down the size of the electrode is below 10 µm. The selectivity of the sensors can be controlled simply by tuning the loading power that enables simple detection of NO2 in mixed gases. Remarkable performance together with a significantly facile fabrication process of the present sensors enhances the potential application of NW sensors in next generation technologies such as electronic noses, the Internet of Things, and smartphone sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...