Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Res ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467704

RESUMO

BACKGROUND: Despite advancements in neonatal care, germinal matrix-intraventricular hemorrhage impacts 20% of very preterm infants, exacerbating their neurological prognosis. Understanding its complex, multifactorial pathophysiology and rapid onset remains challenging. This study aims to link specific cord blood biomolecules at birth with post-natal germinal matrix-intraventricular hemorrhage onset. METHODS: A monocentric, prospective case-control study was conducted at Rouen University Hospital from 2015 to 2020. Premature newborns ( < 30 gestational age) were included and cord blood was sampled in the delivery room. A retrospective matching procedure was held in 2021 to select samples for proteomic and metabolomic analysis of 370 biomolecules. RESULTS: 26 patients with germinal matrix-intraventricular hemorrhage cases and 60 controls were included. Clinical differences were minimal, except for higher invasive ventilation rates in the germinal matrix-intraventricular hemorrhage group. Germinal matrix-intraventricular hemorrhage newborns exhibited lower phosphatidylcholine levels and elevated levels of four proteins: BOC cell adhesion-associated protein, placental growth factor, Leukocyte-associated immunoglobulin-like receptor 2, and tumor necrosis factor-related apoptosis-inducing ligand receptor 2. CONCLUSION: This study identifies biomolecules that may be linked to subsequent germinal matrix-intraventricular hemorrhage, suggesting heightened vascular disruption risk as an independent factor. These results need further validation but could serve as early germinal matrix-intraventricular hemorrhage risk biomarkers for future evaluations. IMPACT: Decrease in certain phosphatidylcholines and increase in four proteins in cord blood at birth may be linked to subsequent germinal matrix-intraventricular hemorrhage in premature newborns. The four proteins are BOC cell adhesion-associated protein, placental growth factor, leukocyte-associated immunoglobulin-like receptor 2, and TNF-related apoptosis-inducing ligand receptor 2. This biological imprint could point toward higher vascular disruption risk as an independent risk factor for this complication and with further validations, could be used for better stratification of premature newborns at birth.

2.
Clin Chim Acta ; 553: 117691, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38081447

RESUMO

Neuromuscular disorders encompass a spectrum of conditions characterized by primary lesions within the peripheral nervous system, which include the anterior horn cell, peripheral nerve, neuromuscular junction, and muscle. In pediatrics, most of these disorders are linked to genetic causes. Despite the considerable progress, the diagnosis of these disorders remains a challenging due to wide clinical presentation, disease heterogeneity and rarity. It is noteworthy that certain neuromuscular disorders, once deemed untreatable, can now be effectively managed through novel therapies. Biomarkers emerge as indispensable tools, serving as objective measures that not only refine diagnostic accuracy but also provide guidance for therapeutic decision-making and the ongoing monitoring of long-term outcomes. Herein a comprehensive review of biomarkers in neuromuscular disorders is provided. We highlight the role of omics-based technologies that further characterize neuromuscular pathophysiology as well as identify potential therapeutic targets to guide treatment strategies.


Assuntos
Distrofia Muscular de Duchenne , Doenças Neuromusculares , Criança , Humanos , Terapia Genética , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/genética , Biomarcadores , Distrofia Muscular de Duchenne/genética
3.
Arch Pediatr ; 31(1): 8-14, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37989664

RESUMO

INTRODUCTION: Hypoglycemia is a common symptom in pediatrics that can lead to neurological sequelae. The etiologies are mostly benign, but hypoglycemia can be a symptom of severe underlying disease. To streamline the etiological investigations, a "hypoglycemia kit," containing supplies needed to perform specific analyses quickly, was made available in the pediatric emergency department of the Rouen University Hospital in 2011. Since its introduction, this kit has been used to explore all cases of hypoglycemia regardless of the context. However, although very useful, these analyses are expensive. The objective of our study was to examine the cost-effectiveness of this kit and to refine its indications if necessary. METHODS: This was a non-interventional and retrospective single-center study. Digital records of patients for whom a hypoglycemia kit was used from September 2011 to August 2019 at the pediatric emergency department of Rouen University Hospital were used to retrieve clinical characteristics, laboratory results, and the causes of hypoglycemia. RESULTS: The study included 82 patients. The etiologic investigation concluded that 74 patients had functional hypoglycemia, and eight cases were attributed to other etiologies. In two cases, the kit led to a diagnosis, i.e., 2.4 % efficiency. A history of congenital malformations or previous hypoglycemia was significantly associated with severe etiologies. However, there was no significant association between hypoglycemia severity, age, sex, and these etiologies. CONCLUSION: Our study reveals that the cost-effectiveness of the hypoglycemia kit is low in pediatric emergencies (2.4 %) at Rouen University Hospital, where functional hypoglycemia remains the leading cause of hypoglycemia. However, our results allow us to suggest a decision tree for refining the usability of this kit, which would considerably increase its efficiency.


Assuntos
Hipoglicemia , Humanos , Criança , Estudos Retrospectivos , Hipoglicemia/diagnóstico , Hipoglicemia/etiologia , Serviço Hospitalar de Emergência , Fatores de Risco , Hospitais Universitários
4.
Transl Res ; 258: 47-59, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36863609

RESUMO

Fabry disease (FD) is an X-linked lysosomal rare disease due to a deficiency of α-galactosidase A activity. The accumulation of glycosphingolipids mainly affects the kidney, heart, and central nervous system, considerably reducing life expectancy. Although the accumulation of undegraded substrate is considered the primary cause of FD, it is established that secondary dysfunctions at the cellular, tissue, and organ levels ultimately give rise to the clinical phenotype. To parse this biological complexity, a large-scale deep plasma targeted proteomic profiling has been performed. We analyzed the plasma protein profiles of FD deeply phenotyped patients (n = 55) compared to controls (n = 30) using next-generation plasma proteomics including 1463 proteins. Systems biology and machine learning approaches have been used. The analysis enabled the identification of proteomic profiles that unambiguously separated FD patients from controls (615 differentially expressed proteins, 476 upregulated, and 139 downregulated) and 365 proteins are newly reported. We observed functional remodeling of several processes, such as cytokine-mediated pathways, extracellular matrix, and vacuolar/lysosomal proteome. Using network strategies, we probed patient-specific tissue metabolic remodeling and described a robust predictive consensus protein signature including 17 proteins CD200, SPINT1, CD34, FGFR2, GRN, ERBB4, AXL, ADAM15, PTPRM, IL13RA1, NBL1, NOTCH1, VASN, ROR1, AMBP, CCN3, and HAVCR2. Our findings highlight the pro-inflammatory cytokines' involvement in FD pathogenesis along with extracellular matrix remodeling. The study shows a tissue-wide metabolic remodeling connection to plasma proteomics in FD. These results will facilitate further studies to understand the molecular mechanisms in FD to pave the way for better diagnostics and therapeutics.


Assuntos
Doença de Fabry , Humanos , Doença de Fabry/complicações , Doença de Fabry/genética , Doença de Fabry/patologia , Proteômica , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo , Fenótipo , Rim/patologia , Proteínas de Membrana/genética , Proteínas ADAM/genética
5.
Clin Chim Acta ; 542: 117278, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871662

RESUMO

BACKGROUND: Dried blood spots (DBS) are widely used as a non-invasive sampling method, especially in newborn screening (NBS). Despite its numerous advantages, conventional DBS might be limited by the hematocrit effect when analyzing a punch, depending on its position in the blood spot. This effect could be avoided using hematocrit-independent sampling devices such as the hemaPEN®. This device collects blood through integrated microcapillaries, and a fixed blood volume is deposited on a pre-punched paper disc. NBS programs are increasingly poised to include lysosomal disorders, given the availability of treatments that improve clinical outcomes if detected early. In this study, the effect of hematocrit and punch position in the DBS on the assay of 6 lysosomal enzymes was evaluated on 3 mm discs pre-punched in hemaPEN® devices compared to 3 mm punches from the PerkinElmer 226 DBS. METHODS: The enzyme activities were measured by multiplexed tandem mass spectrometry coupled to ultra-high performance liquid chromatography. Three hematocrit levels (23%, 35%, and 50%) and punching positions (center, intermediary, and border) were tested. Three replicates have been performed for each condition. A multivariate approach has been used along with a univariate method to assess the effect of the experimental design on each enzyme activity. RESULTS: Hematocrit, punch position, and whole blood sampling method do not affect the assessment of enzyme activity using the NeoLSD® assay. CONCLUSION: The results obtained from conventional DBS and the volumetric device HemaPEN® are comparable. These results underline the reliability of DBS for this test.


Assuntos
Teste em Amostras de Sangue Seco , Espectrometria de Massas em Tandem , Recém-Nascido , Humanos , Espectrometria de Massas em Tandem/métodos , Hematócrito , Reprodutibilidade dos Testes , Cromatografia Líquida de Alta Pressão , Teste em Amostras de Sangue Seco/métodos
6.
Cancers (Basel) ; 13(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34680306

RESUMO

(1) Background: Glioblastoma is the most common malignant brain tumor in adults. Its etiology remains unknown in most cases. Glioblastoma pathogenesis consists of a progressive infiltration of the white matter by tumoral cells leading to progressive neurological deficit, epilepsy, and/or intracranial hypertension. The mean survival is between 15 to 17 months. Given this aggressive prognosis, there is an urgent need for a better understanding of the underlying mechanisms of glioblastoma to unveil new diagnostic strategies and therapeutic targets through a deeper understanding of its biology. (2) Methods: To systematically address this issue, we performed targeted and untargeted metabolomics-based investigations on both tissue and plasma samples from patients with glioblastoma. (3) Results: This study revealed 176 differentially expressed lipids and metabolites, 148 in plasma and 28 in tissue samples. Main biochemical classes include phospholipids, acylcarnitines, sphingomyelins, and triacylglycerols. Functional analyses revealed deep metabolic remodeling in glioblastoma lipids and energy substrates, which unveils the major role of lipids in tumor progression by modulating its own environment. (4) Conclusions: Overall, our study demonstrates in situ and systemic metabolic rewiring in glioblastoma that could shed light on its underlying biological plasticity and progression to inform diagnosis and/or therapeutic strategies.

7.
J Pers Med ; 11(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34575675

RESUMO

BACKGROUND: Fabry disease (FD) is an X-linked lysosomal disease due to a deficiency in the activity of the lysosomal α-galactosidase A (GalA), a key enzyme in the glycosphingolipid degradation pathway. FD is a complex disease with a poor genotype-phenotype correlation. FD could involve kidney, heart or central nervous system impairment that significantly decreases life expectancy. The advent of omics technologies offers the possibility of a global, integrated and systemic approach well-suited for the exploration of this complex disease. MATERIALS AND METHODS: Sixty-six plasmas of FD patients from the French Fabry cohort (FFABRY) and 60 control plasmas were analyzed using liquid chromatography and mass spectrometry-based targeted metabolomics (188 metabolites) along with the determination of LysoGb3 concentration and GalA enzymatic activity. Conventional univariate analyses as well as systems biology and machine learning methods were used. RESULTS: The analysis allowed for the identification of discriminating metabolic profiles that unambiguously separate FD patients from control subjects. The analysis identified 86 metabolites that are differentially expressed, including 62 Glycerophospholipids, 8 Acylcarnitines, 6 Sphingomyelins, 5 Aminoacids and 5 Biogenic Amines. Thirteen consensus metabolites were identified through network-based analysis, including 1 biogenic amine, 2 lysophosphatidylcholines and 10 glycerophospholipids. A predictive model using these metabolites showed an AUC-ROC of 0.992 (CI: 0.965-1.000). CONCLUSION: These results highlight deep metabolic remodeling in FD and confirm the potential of omics-based approaches in lysosomal diseases to reveal clinical and biological associations to generate pathophysiological hypotheses.

8.
Life (Basel) ; 11(3)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673403

RESUMO

NGLY1 deficiency is the first recognized autosomal recessive disorder of N-linked deglycosylation (NGLY1-CDDG). This severe multisystemic disease is still poorly known and, to date, most cases have been diagnosed through whole exome or genome sequencing. The aim of this study is to provide the clinical, biochemical and molecular description of the first NGLY1-CDDG patient from France along with a literature review. The index case presented with developmental delay, acquired microcephaly, hypotonia, alacrimia, feeding difficulty, and dysmorphic features. Given the complex clinical picture and the multisystemic involvement, a trio-based exome sequencing was conducted and urine oligosaccharides were assessed using mass spectrometry. The exome sequencing revealed a novel variant in the NGLY1 gene in a homozygous state. NGLY1 deficiency was confirmed by the identification of the Neu5Ac1Hex1GlcNAc1-Asn oligosaccharide in the urine of the patient. Literature review revealed the association of some key clinical and biological features such as global developmental delay-hypertransaminasemia, movement disorders, feeding difficulties and alacrima/hypolacrima.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...