Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842942

RESUMO

We present the nuclear magnetic resonance spectroscopy (NMR) solution structure of the 5'-terminal stem loop 5_SL1 (SL1) of the SARS-CoV-2 genome. SL1 contains two A-form helical elements and two regions with non-canonical structure, namely an apical pyrimidine-rich loop and an asymmetric internal loop with one and two nucleotides at the 5'- and 3'-terminal part of the sequence, respectively. The conformational ensemble representing the averaged solution structure of SL1 was validated using NMR residual dipolar coupling (RDC) and small-angle X-ray scattering (SAXS) data. We show that the internal loop is the major binding site for fragments of low molecular weight. This internal loop of SL1 can be stabilized by an A12-C28 interaction that promotes the transient formation of an A+•C base pair. As a consequence, the pKa of the internal loop adenosine A12 is shifted to 5.8, compared to a pKa of 3.63 of free adenosine. Furthermore, applying a recently developed pH-differential mutational profiling (PD-MaP) approach, we not only recapitulated our NMR findings of SL1 but also unveiled multiple sites potentially sensitive to pH across the 5'-UTR of SARS-CoV-2.

2.
Nucleic Acids Res ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783391

RESUMO

The single-stranded RNA genome of SARS-CoV-2 is highly structured. Numerous helical stem-loop structures interrupted by mismatch motifs are present in the functionally important 5'- and 3'-UTRs. These mismatches modulate local helical geometries and feature unusual arrays of hydrogen bonding donor and acceptor groups. However, their conformational and dynamical properties cannot be directly inferred from chemical probing and are difficult to predict theoretically. A mismatch motif (SL1-motif) consisting of three consecutive U•U base pairs is located in stem-loop 1 of the 3'-UTR. We combined NMR-spectroscopy and MD-simulations to investigate its structure and dynamics. All three U•U base pairs feature two direct hydrogen bonds and are as stable as Watson-Crick A:U base pairs. Plasmodium falciparum 25S rRNA contains a triple U•U mismatch motif (Pf-motif) differing from SL1-motif only with respect to the orientation of the two closing base pairs. Interestingly, while the geometry of the outer two U•U mismatches was identical in both motifs the preferred orientation of the central U•U mismatch was different. MD simulations and potassium ion titrations revealed that the potassium ion-binding mode to the major groove is connected to the different preferred geometries of the central base pair in the two motifs.

3.
Nucleic Acids Res ; 51(20): 11318-11331, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37791874

RESUMO

We present the high-resolution structure of stem-loop 4 of the 5'-untranslated region (5_SL4) of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) genome solved by solution state nuclear magnetic resonance spectroscopy. 5_SL4 adopts an extended rod-like structure with a single flexible looped-out nucleotide and two mixed tandem mismatches, each composed of a G•U wobble base pair and a pyrimidine•pyrimidine mismatch, which are incorporated into the stem-loop structure. Both the tandem mismatches and the looped-out residue destabilize the stem-loop structure locally. Their distribution along the 5_SL4 stem-loop suggests a role of these non-canonical elements in retaining functionally important structural plasticity in particular with regard to the accessibility of the start codon of an upstream open reading frame located in the RNA's apical loop. The apical loop-although mostly flexible-harbors residual structural features suggesting an additional role in molecular recognition processes. 5_SL4 is highly conserved among the different variants of SARS-CoV-2 and can be targeted by small molecule ligands, which it binds with intermediate affinity in the vicinity of the non-canonical elements within the stem-loop structure.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Sequência de Bases , COVID-19/virologia , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico , RNA Viral/química , SARS-CoV-2/química , SARS-CoV-2/genética
4.
Nucleic Acids Res ; 51(20): 11375-11385, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37791877

RESUMO

We herein report the selection and characterization of a new riboswitch dependent on the aminoglycoside tobramycin. Its dynamic range rivals even the tetracycline dependent riboswitch to be the current best performing, synthetic riboswitch that controls translation initiation. The riboswitch was selected with RNA Capture-SELEX, a method that not only selects for binding but also for structural changes in aptamers on binding. This study demonstrates how this method can fundamentally reduce the labour required for the de novo identification of synthetic riboswitches. The initially selected riboswitch candidate harbours two distinct tobramycin binding sites with KDs of 1.1 nM and 2.4 µM, respectively, and can distinguish between tobramycin and the closely related compounds kanamycin A and B. Using detailed genetic and biochemical analyses and 1H NMR spectroscopy, the proposed secondary structure of the riboswitch was verified and the tobramycin binding sites were characterized. The two binding sites were found to be essentially non-overlapping, allowing for a separate investigation of their contribution to the activity of the riboswitch. We thereby found that only the high-affinity binding site was responsible for regulatory activity, which allowed us to engineer a riboswitch from only this site with a minimal sequence size of 33 nt and outstanding performance.


Assuntos
Aptâmeros de Nucleotídeos , Engenharia Genética , Riboswitch , Tobramicina , Aptâmeros de Nucleotídeos/química , Ligantes , Conformação de Ácido Nucleico , Inibidores da Síntese de Proteínas , RNA/química , Tetraciclina , Tobramicina/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Engenharia Genética/métodos
5.
RNA ; 29(6): 790-807, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36868785

RESUMO

Pseudouridine is the most frequently naturally occurring RNA modification, found in all classes of biologically functional RNAs. Compared to uridine, pseudouridine contains an additional hydrogen bond donor group and is therefore widely regarded as a structure stabilizing modification. However, the effects of pseudouridine modifications on the structure and dynamics of RNAs have so far only been investigated in a limited number of different structural contexts. Here, we introduced pseudouridine modifications into the U-turn motif and the adjacent U:U closing base pair of the neomycin-sensing riboswitch (NSR)-an extensively characterized model system for RNA structure, ligand binding, and dynamics. We show that the effects of replacing specific uridines with pseudouridines on RNA dynamics crucially depend on the exact location of the replacement site and can range from destabilizing to locally or even globally stabilizing. By using a combination of NMR spectroscopy, MD simulations and QM calculations, we rationalize the observed effects on a structural and dynamical level. Our results will help to better understand and predict the consequences of pseudouridine modifications on the structure and function of biologically important RNAs.


Assuntos
Pseudouridina , RNA , RNA/genética , RNA/química , Pseudouridina/genética , Conformação de Ácido Nucleico , Pareamento de Bases , Uridina
6.
Angew Chem Int Ed Engl ; 62(23): e202218064, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36970768

RESUMO

The synthetic neomycin-sensing riboswitch interacts with its cognate ligand neomycin as well as with the related antibiotics ribostamycin and paromomycin. Binding of these aminoglycosides induces a very similar ground state structure in the RNA, however, only neomycin can efficiently repress translation initiation. The molecular origin of these differences has been traced back to differences in the dynamics of the ligand:riboswitch complexes. Here, we combine five complementary fluorine based NMR methods to accurately quantify seconds to microseconds dynamics in the three riboswitch complexes. Our data reveal complex exchange processes with up to four structurally different states. We interpret our findings in a model that shows an interplay between different chemical groups in the antibiotics and specific bases in the riboswitch. More generally, our data underscore the potential of 19 F NMR methods to characterize complex exchange processes with multiple excited states.


Assuntos
Neomicina , Riboswitch , Neomicina/química , Neomicina/metabolismo , Ligantes , Antibacterianos/química , Aminoglicosídeos
7.
Angew Chem Int Ed Engl ; 62(14): e202217171, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36748955

RESUMO

The outbreak of COVID-19 in December 2019 required the formation of international consortia for a coordinated scientific effort to understand and combat the virus. In this Viewpoint Article, we discuss how the NMR community has gathered to investigate the genome and proteome of SARS-CoV-2 and tested them for binding to low-molecular-weight binders. External factors including extended lockdowns due to the global pandemic character of the viral infection triggered the transition from locally focused collaborative research conducted within individual research groups to digital exchange formats for immediate discussion of unpublished results and data analysis, sample sharing, and coordinated research between more than 50 groups from 18 countries simultaneously. We discuss key lessons that might pertain after the end of the pandemic and challenges that we need to address.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Controle de Doenças Transmissíveis , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética
9.
Biomol NMR Assign ; 15(2): 467-474, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34453696

RESUMO

The stem-loop (SL1) is the 5'-terminal structural element within the single-stranded SARS-CoV-2 RNA genome. It is formed by nucleotides 7-33 and consists of two short helical segments interrupted by an asymmetric internal loop. This architecture is conserved among Betacoronaviruses. SL1 is present in genomic SARS-CoV-2 RNA as well as in all subgenomic mRNA species produced by the virus during replication, thus representing a ubiquitous cis-regulatory RNA with potential functions at all stages of the viral life cycle. We present here the 1H, 13C and 15N chemical shift assignment of the 29 nucleotides-RNA construct 5_SL1, which denotes the native 27mer SL1 stabilized by an additional terminal G-C base-pair.


Assuntos
Regiões 5' não Traduzidas , Ressonância Magnética Nuclear Biomolecular , SARS-CoV-2/genética , Conformação de Ácido Nucleico , RNA Líder para Processamento
11.
Biomol NMR Assign ; 15(2): 335-340, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33928512

RESUMO

The SARS-CoV-2 virus is the cause of the respiratory disease COVID-19. As of today, therapeutic interventions in severe COVID-19 cases are still not available as no effective therapeutics have been developed so far. Despite the ongoing development of a number of effective vaccines, therapeutics to fight the disease once it has been contracted will still be required. Promising targets for the development of antiviral agents against SARS-CoV-2 can be found in the viral RNA genome. The 5'- and 3'-genomic ends of the 30 kb SCoV-2 genome are highly conserved among Betacoronaviruses and contain structured RNA elements involved in the translation and replication of the viral genome. The 40 nucleotides (nt) long highly conserved stem-loop 4 (5_SL4) is located within the 5'-untranslated region (5'-UTR) important for viral replication. 5_SL4 features an extended stem structure disrupted by several pyrimidine mismatches and is capped by a pentaloop. Here, we report extensive 1H, 13C, 15N and 31P resonance assignments of 5_SL4 as the basis for in-depth structural and ligand screening studies by solution NMR spectroscopy.


Assuntos
Regiões 5' não Traduzidas , Ressonância Magnética Nuclear Biomolecular , SARS-CoV-2/genética , Sequências Repetidas Invertidas/genética
12.
Angew Chem Int Ed Engl ; 60(25): 14171-14178, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33876501

RESUMO

Non-ribosomal peptide synthetases (NRPS) produce natural products from amino acid building blocks. They often consist of multiple polypeptide chains which assemble in a specific linear order via specialized N- and C-terminal docking domains (N/C DDs). Typically, docking domains function independently from other domains in NRPS assembly. Thus, docking domain replacements enable the assembly of "designer" NRPS from proteins that normally do not interact. The multiprotein "peptide-antimicrobial-Xenorhabdus" (PAX) peptide-producing PaxS NRPS is assembled from the three proteins PaxA, PaxB and PaxC. Herein, we show that the small C DD of PaxA cooperates with its preceding thiolation (T1 ) domain to bind the N DD of PaxB with very high affinity, establishing a structural and thermodynamical basis for this unprecedented docking interaction, and we test its functional importance in vivo in a truncated PaxS assembly line. Similar docking interactions are apparently present in other NRPS systems.


Assuntos
Simulação de Acoplamento Molecular , Peptídeo Sintases/química , Conformação Molecular , Peptídeo Sintases/metabolismo , Termodinâmica
13.
Biomol NMR Assign ; 15(1): 229-234, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33675014

RESUMO

Non-ribosomal peptide synthetases (NRPSs) are large multienzyme machineries. They synthesize numerous important natural products starting from amino acids. For peptide synthesis functionally specialized NRPS modules interact in a defined manner. Individual modules are either located on a single or on multiple different polypeptide chains. The "peptide-antimicrobial-Xenorhabdus" (PAX) peptide producing NRPS PaxS from Xenorhabdus bacteria consists of the three proteins PaxA, PaxB and PaxC. Different docking domains (DDs) located at the N-termini of PaxB and PaxC and at the C-termini of PaxA and BaxB mediate specific non-covalent interactions between them. The N-terminal docking domains precede condensation domains while the C-terminal docking domains follow thiolation domains. The binding specificity of individual DDs is important for the correct assembly of multi-protein NRPS systems. In many multi-protein NRPS systems the docking domains are sufficient to mediate the necessary interactions between individual protein chains. However, it remains unclear if this is a general feature for all types of structurally different docking domains or if the neighboring domains in some cases support the function of the docking domains. Here, we report the 1H, 13C and 15 N NMR resonance assignments for a C-terminal di-domain construct containing a thiolation (T) domain followed by a C-terminal docking domain (CDD) from PaxA and for its binding partner - the N-terminal docking domain (NDD) from PaxB from the Gram-negative entomopathogenic bacterium Xenorhabdus cabanillasii JM26 in their free states and for a 1:1 complex formed by the two proteins. These NMR resonance assignments will facilitate further structural and dynamic studies of this protein complex.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Xenorhabdus
14.
Nucleic Acids Res ; 48(22): 12415-12435, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33167030

RESUMO

The current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5' end, the ribosomal frameshift segment and the 3'-untranslated region (3'-UTR) of the SCoV2 genome, their large-scale production and NMR-based secondary structure determination. The NMR data are corroborated with secondary structure probing by DMS footprinting experiments. The close agreement of NMR secondary structure determination of isolated RNA elements with DMS footprinting and NMR performed on larger RNA regions shows that the secondary structure elements fold independently. The NMR data reported here provide the basis for NMR investigations of RNA function, RNA interactions with viral and host proteins and screening campaigns to identify potential RNA binders for pharmaceutical intervention.


Assuntos
COVID-19/prevenção & controle , Espectroscopia de Ressonância Magnética/métodos , Conformação de Ácido Nucleico , RNA Viral/química , SARS-CoV-2/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , COVID-19/epidemiologia , COVID-19/virologia , Mudança da Fase de Leitura do Gene Ribossômico/genética , Genoma Viral/genética , Humanos , Modelos Moleculares , Pandemias , SARS-CoV-2/fisiologia
15.
ACS Chem Biol ; 15(4): 982-989, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32167274

RESUMO

Nonribosomal peptide synthetases (NRPSs) produce a wide variety of different natural products from amino acid precursors. In contrast to single protein NRPS, the NRPS of the bacterium Xenorhabdus bovienii producing the peptide-antimicrobial-Xenorhabdus (PAX) peptide consists of three individual proteins (PaxA/B/C), which interact with each other noncovalently in a linear fashion. The specific interactions between the three different proteins in this NRPS system are mediated by short C- and N-terminal docking domains (C/NDDs). Here, we investigate the structural basis for the specific interaction between the CDD from the protein PaxB and the NDD from PaxC. The isolated DD peptides feature transient α-helical conformations in the absence of the respective DD partner. Isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR) titration experiments showed that the two isolated DDs bind to each other and form a structurally well-defined complex with a dissociation constant in the micromolar range as is typical for many DD interactions. Artificial linking of this DD pair via a flexible glycine-serine (GS) linker enabled us to solve the structure of the DD complex by NMR spectroscopy. In the complex, the two DDs interact with each other by forming a three helix bundle arranged in an overall coiled-coil motif. Key interacting residues were identified in mutagenesis experiments. Overall, our structure of the PaxB CDD/PaxC NDD complex represents an architecturally new type of DD interaction motif.


Assuntos
Proteínas de Bactérias/metabolismo , Peptídeo Sintases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/metabolismo , Xenorhabdus/enzimologia , Proteínas de Bactérias/química , Peptídeo Sintases/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Subunidades Proteicas/química
16.
Nucleic Acids Res ; 48(2): 949-961, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31754719

RESUMO

RNA aptamers-artificially created RNAs with high affinity and selectivity for their target ligand generated from random sequence pools-are versatile tools in the fields of biotechnology and medicine. On a more fundamental level, they also further our general understanding of RNA-ligand interactions e. g. in regard to the relationship between structural complexity and ligand affinity and specificity, RNA structure and RNA folding. Detailed structural knowledge on a wide range of aptamer-ligand complexes is required to further our understanding of RNA-ligand interactions. Here, we present the atomic resolution structure of an RNA-aptamer binding to the fluorescent xanthene dye tetramethylrhodamine. The high resolution structure, solved by NMR-spectroscopy in solution, reveals binding features both common and different from the binding mode of other aptamers with affinity for ligands carrying planar aromatic ring systems such as the malachite green aptamer which binds to the tetramethylrhodamine related dye malachite green or the flavin mononucleotide aptamer.


Assuntos
Aptâmeros de Nucleotídeos/química , Conformação de Ácido Nucleico , RNA/química , Rodaminas/química , Ligantes , Espectroscopia de Ressonância Magnética , Dobramento de RNA
17.
Biomol NMR Assign ; 13(2): 361-366, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31372934

RESUMO

The natural transformation system of the thermophilic bacterium Thermus thermophilus is one of the most efficient DNA transport systems in terms of DNA uptake rate and promiscuity. The DNA transporter of T. thermophilus plays an important role in interdomain DNA transfer in hot environments. PilF is the traffic ATPase that provides the energy for the assembly of the DNA translocation machinery and the functionally linked type IV pilus system in T. thermophilus. In contrast to other known traffic ATPases, the N-terminal region of PilF harbors three consecutive domains with homology to general secretory pathway II (GSPII) domains. These GSPII-like domains influence pilus assembly, twitching motility and transformation efficiency. A structural homolog of the PilF GSPII-like domains, the N-terminal domain of the traffic ATPase MshE from Vibrio cholerae, was recently crystallized in complex with the bacterial second messenger c-di-GMP. In order to study the consequences of c-di-GMP binding on the three-dimensional architecture of PilF, we initiated structural studies on the PilF GSPII-like domains. Here, we present the 1H, 13C and 15N chemical shift assignments for the isolated PilF GSPII-C domain from T. thermophilus in complex with c-di-GMP. In addition, the structural dynamics of the complex was investigated in an {1H},15N-hetNOE experiment.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , GMP Cíclico/química , GMP Cíclico/metabolismo , Dimerização , Ressonância Magnética Nuclear Biomolecular , Thermus thermophilus/enzimologia , Ligação Proteica , Domínios Proteicos
18.
Biomol NMR Assign ; 13(2): 383-390, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31432400

RESUMO

The PilF protein from the thermophilic bacterium Thermus thermophilus is a traffic ATPase powering the assembly of the DNA translocation machinery as well as of type 4 pili. Thereby PilF mediates the natural transformability of T. thermophilus. PilF contains a C-terminal ATPase domain and three N-terminal domains with partial homology to so-called general secretory pathway II (GSPII) domains. These three GSPII domains (GSPII-A, GSPII-B and GSPII-C) are essential for pilus assembly and twitching motility. They show varying degrees of sequence homology to the N-terminal domain of the ATPase MshE from Vibrio cholerae which binds the bacterial second messenger molecule c-di-GMP. NMR experiments demonstrate that the GSPII-B domain of PilF also binds c-di-GMP with high affinity and forms a 1:1 complex in slow exchange on the NMR time scale. As a prerequisite for structural studies of c-di-GMP binding to the GSPII-B domain of T. thermophilus PilF we present here the NMR resonance assignments for the apo and the c-di-GMP bound state of GSPII-B. In addition, we map the binding site for c-di-GMP on the GSPII-B domain using chemical shift perturbation data and compare the dynamics of the apo and the c-di-GMP-bound state of the GSPII-B domain based on {1H},15N-hetNOE data.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , GMP Cíclico/química , GMP Cíclico/metabolismo , Dimerização , Ressonância Magnética Nuclear Biomolecular , Thermus thermophilus/enzimologia
19.
Biomol NMR Assign ; 13(2): 309-314, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31069720

RESUMO

The protein dimethyladenosine transferase 1 (Dim1) is a highly conserved protein occurring in organisms ranging from bacteria such as E. coli where it is named KsgA to humans. Since Dim1 is involved in the biogenesis of the small ribosomal subunit it is an essential protein. During ribosome biogenesis Dim1 acts as an rRNA modification enzyme and dimethylates two adjacent adenosine residues of the small ribosomal subunit rRNA. In eukaryotes it is also required to ensure the proper endonucleolytic processing of the small ribosomal subunit rRNA precursor. Recently, a third function was proposed for eukaryotic Dim1. Karbstein and coworkers suggested that Dim1 interacts with the essential ribosome assembly factor Fap7 and that Fap7 is responsible for the dissociation of Dim1 from the nascent small ribosomal subunit. Here, we report the backbone 1H, 13C and 15N NMR resonance assignments for the 30.9 kDa Dim1 homologue from the hyperthermophilic archaeon Pyrococcus horikoshii (PhDim1) as a prerequisite for a detailed structural investigation of the PhDim1/PhFap7 interaction.


Assuntos
Metiltransferases/química , Ressonância Magnética Nuclear Biomolecular , Pyrococcus horikoshii/enzimologia , Modelos Moleculares , Conformação Proteica
20.
Biomol NMR Assign ; 13(2): 281-286, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31030336

RESUMO

Ligand binding RNAs such as artificially created RNA-aptamers are structurally highly diverse. Therefore, they represent important model systems for investigating RNA-folding, RNA-dynamics and the molecular recognition of chemically very different ligands, ranging from small molecules to whole cells. High-resolution structures of RNA-aptamers in complex with their cognate ligands often reveal unexpected tertiary structure elements. Recent studies on different classes of aptamers binding the nucleotide triphosphate GTP as a ligand showed that these systems not only differ widely in binding affinity but also in their ligand binding modes and structural complexity. We initiated the NMR-based structure determination of the high-affinity binding GTP-aptamer 9-12 in order to gain further insights into the diversity of ligand binding modes and structural variability of those aptamers. Here, we report 1H, 13C and 15N resonance assignments for the GTP 9-12-aptamer bound to GTP as the prerequisite for the structure determination by solution NMR.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Guanosina Trifosfato/metabolismo , Ressonância Magnética Nuclear Biomolecular , Aptâmeros de Nucleotídeos/genética , Sequência de Bases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...