Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 13(1): 109, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719813

RESUMO

Understanding the solid target dynamics resulting from the interaction with an ultrashort laser pulse is a challenging fundamental multi-physics problem involving atomic and solid-state physics, plasma physics, and laser physics. Knowledge of the initial interplay of the underlying processes is essential to many applications ranging from low-power laser regimes like laser-induced ablation to high-power laser regimes like laser-driven ion acceleration. Accessing the properties of the so-called pre-plasma formed as the laser pulse's rising edge ionizes the target is complicated from the theoretical and experimental point of view, and many aspects of this laser-induced transition from solid to overdense plasma over picosecond timescales are still open questions. On the one hand, laser-driven ion acceleration requires precise control of the pre-plasma because the efficiency of the acceleration process crucially depends on the target properties at the arrival of the relativistic intensity peak of the pulse. On the other hand, efficient laser ablation requires, for example, preventing the so-called "plasma shielding". By capturing the dynamics of the initial stage of the interaction, we report on a detailed visualization of the pre-plasma formation and evolution. Nanometer-thin diamond-like carbon foils are shown to transition from solid to plasma during the laser rising edge with intensities < 1016 W/cm². Single-shot near-infrared probe transmission measurements evidence sub-picosecond dynamics of an expanding plasma with densities above 1023 cm-3 (about 100 times the critical plasma density). The complementarity of a solid-state interaction model and kinetic plasma description provides deep insight into the interplay of initial ionization, collisions, and expansion.

2.
Sci Rep ; 14(1): 5361, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438504

RESUMO

The laser-damage performance characteristics of potassium dihydrogen phosphate (KDP) samples under exposure to a distinctive broadband incoherent laser pulse are investigated. A laser system providing such pulses is intended to explore improved energy-coupling efficiency on the target in direct-drive inertial confinement fusion experiments and provides incoherent bandwidths as large as 10 THz in a nanosecond pulse. A consequence of this bandwidth is very rapid fluctuations in intensity capable of reaching maxima much larger than the average intensity within the pulse. A custom damage-test station has been built to perform measurements with broadband incoherent pulses in order to determine what effect these fast and high-intensity oscillations have on laser damage. A set of experiments under different bandwidth and beam configurations shows the effect to be minimal when probing bulk damage in KDP. Modeling indicates this behavior is supported by long electron-relaxation times compared to the source-field fluctuations, following excitation of individual electrons in the conduction band. The results help better understand the laser-induced-damage mechanisms in KDP, and its ability to operate in broadband temporally incoherent high-energy lasers that may be particularly suitable for future laser-fusion energy systems.

3.
Sci Rep ; 10(1): 14007, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32814797

RESUMO

The development of high power mid-IR laser applications requires a study on laser induced damage threshold (LIDT) in the mid-IR. In this paper we have measured the wavelength dependence of the plasma formation threshold (PFT) that is a LIDT precursor. In order to interpret the observed trends numerically, a model describing the laser induced electron dynamics, based on multiple rate equations, has been developed. We show both theoretically and experimentally that PFT at mid-IR wavelengths is controlled by a transition from weak- to strong-field regime of free carrier absorption. In the case of MgF[Formula: see text] this transition occurs around 3-4 [Formula: see text]m corresponding to the region of the lowermost PFT. The region of the uppermost PFT is reached around 1 [Formula: see text]m and is governed by an interplay of photoionization and weak-field free carrier absorption which manifests itself in both MgF[Formula: see text] and SiO[Formula: see text]. The PFT observed in considered materials exhibits a universal dependence on the excitation wavelength in dielectrics. Thus, the presented results pave the route towards efficient and controllable laser-induced material modifications and should be of direct interest to laser researchers and application engineers for prevention of laser-induced damage of optical components in high-intensity mid-IR laser systems.

4.
Opt Express ; 28(10): 15189-15206, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403551

RESUMO

Glass processing is a subject of high interest for many industrial fields such as optics manufacturing, smart electronics or medical devices. With respect to nanosecond technology, the use of femtosecond lasers allows to achieve high processing quality thanks to nonlinear absorption properties. Nevertheless, the throughput of femtosecond processing is still very low when compared to other laser technologies. Temporal and spatial pulse shaping is a smart and flexible solution to further increase the efficiency of femtosecond laser processing by driving efficiently both electron dynamics and absorption involved during laser irradiation. In the present work, the effect of temporal pulse shaping on fused silica ablation is investigated by single-wavelength (1030nm) double femtosecond pulses pump-pump experiment. Two sub-pulses are focused on the top surface of fused silica with two different polarization configurations: (i) orthogonally-crossed linear polarization or (ii) counter-rotating circular polarization. The investigated parameters are the pulse-to-pulse delay, set with a delay line, the total fluence and the polarization configuration. The results are discussed in term of optical transmission, modification and ablation thresholds, and ablated volume. A numerical model describing the electron dynamics and the absorbed energy density is also presented to support interpretation of experimental results. It is demonstrated that pulse-to-pulse delay has a major influence on ablated volume, modification and ablation threshold. Polarization state has also, to a lesser extent, a significant influence on ablated volume. Their cooperative effect on the ablation efficiency is discussed.

5.
Appl Opt ; 54(6): 1463-70, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25968214

RESUMO

The laser-induced damage growth phenomenon is experimentally studied for damage sites on the exit surface of fused silica. The sites are irradiated by nanosecond laser pulses at 1064 and 355 nm separately and also simultaneously. The results in the single wavelength configurations are expressed in terms of the probability of growth and growth coefficient. For growing sites, a fluence correction expression is proposed in order to take into account the millimetric Gaussian profile of the beams. The use of this expression is necessary to obtain results that are consistent with the ones obtained in the existing literature with large homogeneous beams. In the multiple wavelengths configuration, the results are expressed as a function of the laser fluences at each wavelength and are found to be closely related to the parameters determined in the single wavelength experiments. A coupling between the two wavelengths is quantified, and could originate from the formation and the expansion of a plasma produced both in the center and at the periphery of the damage sites.

6.
J Phys Condens Matter ; 25(43): 435501, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24100170

RESUMO

We investigate the electronic photo-excitation and relaxation mechanisms involved in the optical breakdown of potassium dihydrogen phosphate crystal (KH2PO4) and its deuterated form. The dynamics and spectroscopic properties of electron-hole pair formation are investigated using time-resolved measurement of the dielectric function, and luminescence spectroscopy. The non-common mechanical and electronic characteristics of these dielectric materials are revealed by the particular structure of ablation craters and also by the complex dynamics observed in the relaxation of excited carriers. This relaxation occurs in two steps, and varies with the initial carrier density and thus with the laser intensity. We show that the defect states play a key role in the excitation pathways, and also determine the relaxation stage. The latter also depends upon the initial amount of energy of the electron-hole pair after photo-excitation. A model based on kinetic equations describing the evolution of the different level populations allows us to successfully interpret and reproduce the experimental data.

7.
J Phys Condens Matter ; 25(23): 235501, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23676194

RESUMO

We present a semi-analytical model for free electron production induced by multiphoton ionization in dielectric materials for short laser pulses at moderate intensities. Within this approach, the laser-induced absorption is described through the Bloch-Volkov formalism, and the electronic structure of materials is evaluated through first-principles calculations. Results obtained for NaCl and KDP (KH2PO4) materials show that significant deviations from the parabolic band approximation may occur. When the laser intensity increases, high multiphotonic orders may become the predominant mechanisms outside the centre of the Brillouin zone.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(5 Pt 2): 056403, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-23004875

RESUMO

When an intense and short laser pulse propagates in a dielectric material, significant production of conduction electrons through multiphoton absorption (MPA) may occur. In addition to the laser intensity, the MPA process depends mainly on the laser frequency spectrum which may evolve significantly during the course of laser propagation in the material. Simple models for MPA accounting for possible time-dependent evolution of the laser frequency spectrum (as harmonic generation, chirping or broadening) are addressed. The first model is based on Bloch-Volkov states whereas the second approach relies on the density matrix formalism which has been adapted for the present study. Both models are well adapted for their introduction in a propagation code and are shown to correctly account for the MPA process whatever the characteristics of the laser frequency spectrum. The reliability of these approaches has been studied in two cases of practical interest. First, in the case where a second harmonic is present within the fundamental pulse, calculations show that the ionization rate may be significantly enhanced. Second, in the case of a chirped pulse, models are shown to correctly account for possible change in the multiphoton order during the course of interaction.

9.
Appetite ; 56(2): 403-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21146573

RESUMO

The study investigates the prevalence of overweight and obesity in a population of intellectually disabled (ID) adolescents. An observational study was conducted on a group of 410 ID children, living in France. Overweight and obesity, defined according to international standards, were analyzed and related to demographic and sociological parameters, educational care, physical activity and dietary habits. The study highlighted a high prevalence of overweight and obesity (19.0%) in ID adolescents and 22.5% in oldest teenagers, age 15-20 y. This observation was more likely in medico-educative institutes (25.1%) than in general schools (12.3%). Average time spent in physical activity was 4.5 h/week, compared with 3.5 h/week in obese subjects. Time spent in sedentary behavior was 26.6 h/week for the whole population, compared with 18.6 h/week in obese adolescents. Meals were ingested regularly, and adherence to eating breakfast was good. However, snacks and soft drinks were consumed between and during meals by 66.5% of subjects. Overweight in young ID appeared to be related to parental overweight. Even though ID adolescents receive a balanced diet and practice sport regularly, they exhibit a high prevalence for overweight and obesity. In subjects more than 15 years of age, enrollment in medico-educative institutes and parental overweight were contributory factors to poor weight status.


Assuntos
Comportamento Alimentar , Atividade Motora , Obesidade/epidemiologia , Comportamento Sedentário , Inquéritos e Questionários , Adolescente , Índice de Massa Corporal , Peso Corporal , Bebidas Gaseificadas , Criança , Inquéritos sobre Dietas , Ingestão de Alimentos , Feminino , França/epidemiologia , Humanos , Deficiência Intelectual/complicações , Masculino , Obesidade/complicações , Prevalência , Classe Social , Adulto Jovem
10.
Opt Express ; 17(24): 21652-65, 2009 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-19997406

RESUMO

We investigate the influence of THG-cut KDP crystal orientation on laser damage at 1064 nm under nanosecond pulses. Since laser damage is now assumed to initiate on precursor defects, this study makes a connection between these nanodefects (throughout a mesoscopic description) and the influence of their orientation on laser damage. Some investigations have already been carried out in various crystals and particularly for KDP, indicating propagation direction and polarization dependences. We performed experiments for two orthogonal positions of the crystal and results clearly indicate that KDP crystal laser damage depends on its orientation. We carried out further investigations on the effect of the polarization orientation, by rotating the crystal around the propagation axis. We then obtained the evolution of the damage probability as a function of the rotation angle. To account for these experimental res ts, we propose a laser damage model based on ellipsoid-shaped defects. This modeling is a refined implementation of the DMT model (Drude Mie Thermal) [Dyan et al., J. Opt. Soc. Am. B 25, 1087-1095 (2008)], by introducing absorption efficiency calculations for an ellipsoidal geometry. Modeling simulations are in good agreement with experimental results.


Assuntos
Lasers , Algoritmos , Cristalização , Desenho de Equipamento , Teste de Materiais , Modelos Teóricos , Óptica e Fotônica , Fosfatos/química , Compostos de Potássio/química
11.
Opt Express ; 17(13): 10434-56, 2009 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-19550440

RESUMO

When potassium dihydrogen phosphate crystals (KH(2)PO(4) or KDP) are illuminated by multi-gigawatt nanosecond pulses, damages may appear in the crystal bulk. One can increase damage resistance through a conditioning that consists in carrying out a laser pre-exposure of the crystal. The present paper addresses the modeling of laser-induced damage and conditioning of KDP crystals. The method is based on heating a distribution of defects, the cooperation of which may lead to a dramatic temperature rise. In a previous investigation [Opt. Express 15, 4557-4576 (2007)], calculations were performed for cases where the heat diffusion was permitted in one and three spatial dimensions, corresponding respectively to planar and point defects. For the sake of completeness, the present study involves the 2D heat diffusion that is associated with linear defects. A comparison to experimental data leads to the conclusion that 1D calculations are the most appropriate for describing the laser-induced damage in KDP. Within this framework, the evolution of the damage density is given as a function of the laser energy density and an in-depth analysis of the results is provided based on simple analytical expressions that can be used for experimental design. Regarding the conditioning, assuming that it is due to a decrease in the defect absorption efficiency, two scenarios associated with various defect natures are proposed and these account for certain of the observed experimental facts. For instance, in order to improve the crystal resistance to damage, one needs to use a conditioning pulse duration shorter than the testing pulse. Also, a conditioning scenario based on the migration of point (atomic-size) defects allows the reproduction of a logarithmic-like evolution of the conditioning gain with respect to the number of laser pre-exposures. Moreover, this study aims at refining the knowledge regarding the precursor defects responsible for the laser-induced damage in KDP crystals. Within the presented modeling, the best candidate permitting the reproduction of major experimental facts is comprised of a collection of one-hundred-nanometer structural defects associated with point defects as for instance cracks and couples of oxygen interstitials and vacancies.

12.
Opt Express ; 15(8): 4557-76, 2007 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-19532703

RESUMO

By coupling statistics and heat transfer, we investigate numerically laser-induced crystal damage by multi-gigawatt nanosecond pulses. Our model is based on the heating of nanometric absorbing defects that may cooperate when sufficiently aggregated. In that configuration, they induce locally a strong increase of temperature that may lead to a subsequent damage. This approach allows to predict cluster size distribution and damage probabilities as a function of the laser fluence. By studying the influence of the pulse duration onto the laser-induced damage threshold, we have established scaling laws that link the critical laser fluence to its pulse duration tau. In particular, this approach provides an explanation to the deviation from the standard tau(1/2) scaling law that has been recently observed in laser-induced damage experiments with KH(2)PO(4) (KDP) crystals [J.J. Adams et al., Proc. of SPIE 5991, 5991R-1 (2005)]. In the present paper, despite the 3D problem is tackled, we focus our attention on a 1D modeling of thermal diffusion that is shown to provide more reliable predictions than the 3D one. These results indicate that absorbers involved in KDP damage may be associated with a collection of planar defects. First general comparisons with some experimental facts have been performed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...