Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13238, 2024 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853171

RESUMO

The European brittle star Amphiura filiformis emits blue light, via a Renilla-like luciferase, which depends on the dietary acquisition of coelenterazine. Questions remain regarding luciferin availability across seasons and the persistence of luminous capabilities after a single boost of coelenterazine. To date, no study has explored the seasonal, long-term monitoring of these luminous capabilities or the tracking of luciferase expression in photogenic tissues. Through multidisciplinary analysis, we demonstrate that luminous capabilities evolve according to the exogenous acquisition of coelenterazine throughout adult life. Moreover, no coelenterazine storage forms are detected within the arms tissues. Luciferase expression persists throughout the seasons, and coelenterazine's presence in the brittle star diet is the only limiting factor for the bioluminescent reaction. No seasonal variation is observed, involving a continuous presence of prey containing coelenterazine. The ultrastructure description provides a morphological context to investigate the green autofluorescence signal attributed to coelenterazine during luciferin acquisition. Finally, histological analyses support the hypothesis of a pigmented sheath leading light to the tip of the spine. These insights improve our understanding of the bioluminescence phenomenon in this burrowing brittle star.


Assuntos
Pirazinas , Estações do Ano , Animais , Pirazinas/metabolismo , Imidazóis , Equinodermos , Luminescência , Luciferases/metabolismo , Luciferases/genética , Medições Luminescentes/métodos , Luz
2.
PLoS One ; 19(3): e0298185, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38466680

RESUMO

Bioluminescence is the production of visible light by living organisms thanks to a chemical reaction, implying the oxidation of a substrate called luciferin catalyzed by an enzyme, the luciferase. The luminous brittle star Amphiura filiformis depends on coelenterazine (i.e., the most widespread luciferin in marine ecosystems) and a luciferase homologous to the cnidarian Renilla luciferase to produce blue flashes in the arm's spine. Only a few studies have focused on the ontogenic apparitions of bioluminescence in marine organisms. Like most ophiuroids, A. filiformis displays planktonic ophiopluteus larvae for which the ability to produce light was not investigated. This study aims to document the apparition of the luminous capabilities of this species during its ontogenic development, from the egg to settlement. Through biochemical assays, pharmacological stimulation, and Renilla-like luciferase immunohistological detection across different developing stages, we pointed out the emergence of the luminous capabilities after the ophiopluteus larval metamorphosis into a juvenile. In conclusion, we demonstrated that the larval pelagic stage of A. filiformis is not bioluminescent compared to juveniles and adults.


Assuntos
Equinodermos , Ecossistema , Animais , Organismos Aquáticos , Luciferases/química , Larva , Luciferinas
3.
Life (Basel) ; 13(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37763202

RESUMO

Bioluminescence, the ability of living organisms to emit visible light, is an important ecological feature for many marine species. To fulfil the ecological role (defence, offence, or communication), bioluminescence needs to be finely controlled. While many benthic anthozoans are luminous, the physiological control of light emission has only been investigated in the sea pansy, Renilla koellikeri. Through pharmacological investigations, a nervous catecholaminergic bioluminescence control was demonstrated for the common sea pen, Pennatula phosphorea, and the tall sea pen, Funiculina quadrangularis. Results highlight the involvement of adrenaline as the main neuroeffector triggering clusters of luminescent flashes. While noradrenaline and octopamine elicit flashes in P. phosphorea, these two biogenic amines do not trigger significant light production in F. quadrangularis. All these neurotransmitters act on both the endodermal photocytes located at the base and crown of autozooids and specific chambers of water-pumping siphonozooids. Combined with previous data on R. koellikeri, our results suggest that a catecholaminergic control mechanisms of bioluminescence may be conserved in Anthozoans.

4.
Photochem Photobiol ; 97(4): 739-744, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33529364

RESUMO

Since recently, shark's bioluminescence has been recorded from two Squaliformes families, the Etmopteridae and Dalatiidae. Pictures of luminescence, light organ morphologies and physiology of the luminous control have been described for species of the Etmopteridae and Dalatiidae families. In 2015, a third luminous family, Somniosidae, was assumed to present a bioluminescent species, Zameus squamulosus. Up to now, confirmation of the luminous abilities of Z. squamulosus is lacking. Here, the luminescence of Z. squamulosus was in vivo recorded for the first time confirming the bioluminescence status of the third luminescent shark family. Additionally, photophore histology revealed the conservation of the light organ morphology across the luminous Squaliformes. Light transmittance analysis through the placoid scale added information on the luminescence efficiency and highlighted a new type of bioluminescent-like squamation. All these data reinforced the likelihood that the common ancestor of Dalatiidae, Etmopteridae and Somniosidae may already have been luminescent for counterillumination purpose.


Assuntos
Luminescência , Tubarões , Animais
5.
PLoS One ; 15(11): e0242196, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33237911

RESUMO

Despite its five meters length, the megamouth shark (Megachasma pelagios Taylor, Compagno & Struhsaker, 1983) is one of the rarest big sharks known in the world (117 specimens observed and documented so far). This filter-feeding shark has been assumed to be a luminous species, using its species-specific white band to produce bioluminescence as a lure trap. Another hypothesis was the use of the white band reflectivity to attract prey or for social recognition purposes. However, no histological study has ever been performed to confirm these assumptions so far. Two hypotheses about the megamouth shark's luminescence arose: firstly, the light emission may be intrinsically or extrinsically produced by specific light organs (photophores) located either on the upper jaw white band or inside the mouth; secondly, the luminous appearance might be a consequence of the reflection of prey luminescence on the white band during feeding events. Aims of the study were to test these hypotheses by highlighting the potential presence of specific photophores responsible for bioluminescence and to reveal and analyze the presence of specialized light-reflective structures in and around the mouth of the shark. By using different histological approaches (histological sections, fluorescent in situ hybridization, scanning electron microscopy) and spectrophotometry, this study allows to unravel these hypotheses and strongly supports that the megamouth shark does not emit bioluminescence, but might rather reflect the light produced by bioluminescent planktonic preys, thanks to the denticles of the white band.


Assuntos
Luminescência , Tubarões/metabolismo , Animais , Plâncton/metabolismo , Plâncton/efeitos da radiação , Raios Ultravioleta
6.
Sci Rep ; 10(1): 18762, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33128012

RESUMO

The function of pocket shark pectoral pockets has puzzled scientists over decades. Here, we show that the pockets of the American Pocket Shark (Mollisquama mississippiensis) contain a brightly fluorescent stratified cubic epithelium enclosed in a pigmented sheath and in close contact with the basal cartilage of the pectoral fins; cells of this epithelium display a centripetal gradient in size and a centrifuge gradient in fluorescence. These results strongly support the idea that pocket shark's pockets are exocrine holocrine glands capable of discharging a bioluminescent fluid, potentially upon a given movement of the pectoral fin. Such capability has been reported in many other marine organisms and is typically used as a close-range defensive trick. In situ observations would be required to confirm this hypothesis.


Assuntos
Nadadeiras de Animais/metabolismo , Tubarões/metabolismo , Nadadeiras de Animais/fisiologia , Animais , Medições Luminescentes , Tubarões/fisiologia , Natação/fisiologia
7.
Sci Rep ; 10(1): 10195, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576969

RESUMO

The velvet belly lanternshark, Etmopterus spinax, uses counterillumination to disappear in the surrounding blue light of its marine environment. This shark displays hormonally controlled bioluminescence in which melatonin (MT) and prolactin (PRL) trigger light emission, while α-melanocyte-stimulating hormone (α-MSH) and adrenocorticotropic hormone (ACTH) play an inhibitory role. The extraocular encephalopsin (Es-Opn3) was also hypothesized to act as a luminescence regulator. The majority of these compounds (MT, α-MSH, ACTH, opsin) are members of the rapid physiological colour change that regulates the pigment motion within chromatophores in metazoans. Interestingly, the lanternshark photophore comprises a specific iris-like structure (ILS), partially composed of melanophore-like cells, serving as a photophore shutter. Here, we investigated the role of (i) Es-Opn3 and (ii) actors involved in both MT and α-MSH/ACTH pathways on the shark bioluminescence and ILS cell pigment motions. Our results reveal the implication of Es-Opn3, MT, inositol triphosphate (IP3), intracellular calcium, calcium-dependent calmodulin and dynein in the ILS cell pigment aggregation. Conversely, our results highlighted the implication of the α-MSH/ACTH pathway, involving kinesin, in the dispersion of the ILS cell pigment. The lanternshark luminescence then appears to be controlled by the balanced bidirectional motion of ILS cell pigments within the photophore. This suggests a functional link between photoreception and photoemission in the photogenic tissue of lanternsharks and gives precious insights into the bioluminescence control of these organisms.


Assuntos
Movimento/fisiologia , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/fisiologia , Pigmentação/fisiologia , Tubarões/metabolismo , Tubarões/fisiologia , Hormônio Adrenocorticotrópico/metabolismo , Animais , Luz , Luminescência , Melatonina/metabolismo , Opsinas/metabolismo , Prolactina/metabolismo , Transdução de Sinais/fisiologia , Pele/metabolismo , Pele/fisiopatologia , alfa-MSH/metabolismo
8.
Gen Comp Endocrinol ; 294: 113488, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32272132

RESUMO

As part of the study of their bioluminescence, the deep-sea lanternshark Etmopterus spinax and Etmopterus molleri (Chondrichthyes, Etmopteridae) received growing interest over the past ten years. These mesopelagic sharks produce light thanks to a finely tuned hormonal control involving melatonin, adrenocorticotropic hormone and α-melanocyte-stimulating hormone. Receptors of these hormones, respectively the melatonin receptors and the melanocortin receptors, are all members of the G-protein coupled receptor family i.e. coupled with specific G proteins involved in the preliminary steps of their transduction pathways. The present study highlights the specific localization of the hormonal receptors, as well as of their associated G-proteins within the light organs, the so-called photophores, in E. spinax and E. molleri through immunohistofluorescence technic. Our results allow gaining insight into the molecular actors and mechanisms involved in the control of the light emission in Etmopterid sharks.


Assuntos
Hormônios/metabolismo , Luminescência , Receptores de Superfície Celular/metabolismo , Tubarões/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Estruturas Animais/metabolismo , Animais , Proteínas de Ligação ao GTP/metabolismo , Melatonina/metabolismo , Filogenia , Receptores de Melatonina/metabolismo , alfa-MSH/metabolismo
9.
J Fish Biol ; 96(6): 1523-1529, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32246461

RESUMO

Multiple paternity seems common within elasmobranchs. Focusing on two deep-sea shark species, the velvet belly lanternshark (Etmopterus spinax) and the slendertail lanternshark (Etmopterus molleri) we inferred the paternity in 31 E. spinax litters from Norway (three to 18 embryos per litter) and six E. molleri litters from Japan (three to six embryos), using 21 and 10 specific microsatellites, respectively. At least two E. spinax litters were sired from multiple fathers each, with highly variable paternal skew (1:1 to 9:1). Conversely, no clear signal of genetic polyandry was found in E. molleri.


Assuntos
Comportamento Sexual Animal/fisiologia , Tubarões/fisiologia , Animais , Escuridão , Feminino , Japão , Masculino , Repetições de Microssatélites/genética , Noruega , Paternidade
10.
J Exp Biol ; 223(Pt 4)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31974222

RESUMO

Bioluminescence is a widespread phenomenon in the marine environment. Among luminous substrates, coelenterazine is the most widespread luciferin, found in eight phyla. The wide phylogenetic coverage of this light-emitting molecule has led to the hypothesis of its dietary acquisition, which has so far been demonstrated in one cnidarian and one lophogastrid shrimp species. Within Ophiuroidea, the dominant class of luminous echinoderms, Amphiura filiformis is a model species known to use coelenterazine as substrate of a luciferin/luciferase luminous system. The aim of this study was to perform long-term monitoring of A. filiformis luminescent capabilities during captivity. Our results show (i) depletion of luminescent capabilities within 5 months when the ophiuroid was fed a coelenterazine-free diet and (ii) a quick recovery of luminescent capabilities when the ophiuroid was fed coelenterazine-supplemented food. The present work demonstrates for the first time a trophic acquisition of coelenterazine in A. filiformis to maintain light emission capabilities.


Assuntos
Dieta , Equinodermos/fisiologia , Imidazóis/administração & dosagem , Pirazinas/administração & dosagem , Animais , Medições Luminescentes , Cloreto de Potássio/farmacologia
11.
Photochem Photobiol ; 96(1): 37-45, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31441051

RESUMO

Among Etmopteridae and Dalatiidae, luminous species use hormonal control to regulate bioluminescence. Melatonin (MT) triggers light emission and, conversely, alpha melanocyte-stimulating hormone (α-MSH) actively reduces ongoing luminescence. Prolactin (PRL) acts differentially, triggering light emission in Etmopteridae and inhibiting it in Dalatiidae. Interestingly, these hormones are also known as regulators of skin pigment movements in vertebrates. One other hormone, the adrenocorticotropic hormone (ACTH), also members of the skin pigmentation regulators, is here pharmacologically tested on the light emission. Results show that ACTH inhibits luminescence in both families. Moreover, as MT and α-MSH/ACTH receptors are members of the G-protein coupled receptor (GPCR) family, we investigated the effect of hormonal treatments on the cAMP level of photophores through specific cAMP assays. Our results highlight the involvement of ACTH and cAMP in the control of light emission in sharks and suggest a functional similarity between skin pigment migration and luminescence control, this latter being mediated by pigment movements in the light organ-associated iris-like structure cells.


Assuntos
Hormônio Adrenocorticotrópico/fisiologia , AMP Cíclico/fisiologia , Animais , Luminescência , Tubarões , Pigmentação da Pele
12.
Acta Histochem ; 121(4): 516-521, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31027729

RESUMO

Marine organisms are able to produce light using either their own luminous system, called intrinsic bioluminescence, or symbiotic luminous bacteria, called extrinsic bioluminescence. Among bioluminescent vertebrates, Osteichthyes are known to harbor both types of bioluminescence, while no study has so far addressed the potential use of intrinsic/extrinsic luminescence in elasmobranchs. In sharks, two families are known to emit light: Etmopteridae and Dalatiidae. The deep-sea bioluminescent Etmopteridae, Etmopterus spinax, has received a particular interest over the past fifteen years and its bioluminescence control was investigated in depth. However, the nature of the shark luminous system still remains enigmatic. The present work was undertaken to assess whether the light of this shark species originates from a bioluminescent bacterial symbiosis. Using fluorescent in situ hybridization (FISH) and transmission electron microscopy (TEM) image analyses, this study supports the conclusion that the bioluminescence in the deep-sea lanternshark, Etmopterus spinax, is not of bacterial origin.


Assuntos
Bactérias/metabolismo , Luminescência , Tubarões/microbiologia , Tubarões/fisiologia , Animais , Hibridização in Situ Fluorescente , Microscopia Eletrônica de Transmissão
13.
Zoological Lett ; 5: 9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873292

RESUMO

BACKGROUND: In the darkness of the ocean, an impressive number of taxa have evolved the capability to emit light. Many mesopelagic organisms emit a dim ventral glow that matches with the residual environmental light in order to camouflage themselves (counterillumination function). Sharks use their luminescence mainly for this purpose. Specific lateral marks have been observed in Etmopteridae sharks (one of the two known luminous shark families) suggesting an inter/intraspecific recognition. Conversely, dorsal luminescence patterns are rare within these deep-sea organisms. RESULTS: Here we report evidence that Etmopterus spinax, Etmopterus molleri and Etmopterus splendidus have dorsal luminescence patterns. These dorsal patterns consist of specific lines of luminous organs, called photophores, on the rostrum, dorsal area and at periphery of the spine. This dorsal light seems to be in contrast with the counterilluminating role of ventral photophores. However, skin photophores surrounding the defensive dorsal spines show a precise pattern supporting an aposematism function for this bioluminescence. Using in situ imaging, morphological and histological analysis, we reconstructed the dorsal light emission pattern on these species, with an emphasis on the photogenic skin associated with the spine. Analyses of video footage validated, for the first time, the defensive function of the dorsal spines. Finally, we did not find evidence that Etmopteridae possess venomous spine-associated glands, present in Squalidae and Heterondontidae, via MRI and CT scans. CONCLUSION: This work highlights for the first time a species-specific luminous dorsal pattern in three deep-sea lanternsharks. We suggest an aposematic use of luminescence to reveal the presence of the dorsal spines. Despite the absence of venom apparatus, the defensive use of spines is documented for the first time in situ by video recordings.

14.
Mol Biol Rep ; 46(1): 1357-1362, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30603952

RESUMO

Etmopterus spinax (Linnaeus, 1758) and Etmopterus molleri (Whitley, 1939) are two bioluminescent deep-sea sharks, usually caught in large numbers as bycatch by deep-water fisheries. Yet, no study has ever involved population status of these two species using genetic tools. In order to investigate population genetic structure, diversity and connectivity of these two lanternsharks, 29 and 19 microsatellite loci were isolated from E. spinax DNA library for E. spinax and E. molleri, respectively. These loci were tested on 32 E. spinax individuals from the North Sea and seven E. molleri from the East China Sea. The number of alleles per locus ranged from 2 to 13. The observed heterozygosity ranged from 0.031 to 0.839 for E. spinax and from 0.000 to 1.000 for E. molleri, while the expected heterozygosity ranged from 0.031 to 0.903 and from 0.143 to 0.821, respectively. Almost all loci (24 and 16, respectively) were at Hardy-Weinberg equilibrium for both species and no linkage disequilibrium among loci was detected. These loci represent useful tools to better understand the population structure of these two species. Besides, they could also be suitable for other lanternsharks in general, as these latter remain largely understudied, specially in terms of understanding the basic science that will serve into their conservation.


Assuntos
Loci Gênicos , Repetições de Microssatélites/genética , Tubarões/genética , Animais , Frequência do Gene/genética , Variação Genética
15.
Acta Histochem ; 121(1): 7-15, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30322809

RESUMO

Nervous control of light emission from deep-sea mesopelagic fishes has been documented for several species. Studies on the nervous control of photophores from deep-sea luminescent fish, are mainly restricted to a pharmacological approach. For example, the light organs, called photophores, isolated from Argyropelecus hemygimnus and Maurolicus muelleri show a much higher sensitivity to adrenaline than to noradrenaline. According to these results and other information in different species, catecholamines are considered as main neurotransmitters triggering bioluminescence in deep-sea fishes. The present work is a study of the nervous control of the isolated photophores from two Stomiid fishes, Chauliodus sloani (the viperfish) and Stomias boa (the dragonfish) with the aim to determine the nature of the nervous control by pharmacological, biochemical and morphological approaches. Results show that, although the photophores of both species are sensitive to catecholamines, adrenaline is present in larger amount than noradrenaline in the light organs of C. sloani. Both catecholamines have different immunoreactive (IR) sites, noradrenaline showing a very diffuse localization as compared to adrenaline in C. sloani. On the contrary, only adrenaline is detected in the photocytes chamber and nerves innervating the photophore in S. boa. Knowing that the majority of dragonfishes exhibit a luminescent chin barbel, we also investigated the presence of catecholamines in this specific tissue in S. boa. Immunohistology reveals the presence of adrenaline within the tissue forming the chin barbel; adrenaline-IR is found in the connective tissue surroundings two group of muscle fibers and blood vessels in the stem but also around the multiple blood vessels located within the barbel bulb. Our results strongly support the adrenergic control of light emission in bioluminescent stomiid fishes.


Assuntos
Catecolaminas/farmacocinética , Luminescência , Neurotransmissores/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Peixes , Imuno-Histoquímica
16.
PLoS One ; 13(12): e0209767, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30596723

RESUMO

The velvet belly lanternshark (Etmopterus spinax) is a small deep-sea shark commonly found in the Eastern Atlantic and the Mediterranean Sea. This bioluminescent species is able to emit a blue-green ventral glow used in counter-illumination camouflage, mainly. In this study, paired-end Illumina HiSeqTM technology has been employed to generate transcriptome data from eye and ventral skin tissues of the lanternshark. About 64 and 49 million Illumina reads were generated from skin and eye tissues respectively. The assembly allowed us to predict 119,749 total unigenes including 94,569 for the skin transcriptome and 94,365 for the eye transcriptome while 74,753 were commonly found in both transcriptomes. A taxonomy filtering was applied to extract a reference transcriptome containing 104,390 unigenes among which 38,836 showed significant similarities to known sequences in NCBI non-redundant protein sequences database. Around 58% of the annotated unigenes match with predicted genes from the Elephant shark (Callorhinchus milii) genome. The transcriptome completeness has been evaluated by successfully capturing around 98% of orthologous genes of the « Core eukaryotic gene dataset ¼ within the E. spinax reference transcriptome. We identified potential "light-interacting toolkit" genes including multiple genes related to ocular and extraocular light perception processes such as opsins, phototransduction actors or crystallins. Comparative gene expression analysis reveals eye-specific expression of opsins, ciliary phototransduction actors, crystallins and vertebrate retinoid pathway actors. In particular, mRNAs from a single rhodopsin gene and its potentially associated peropsin were detected in the eye transcriptome, only, confirming a monochromatic vision of the lanternshark. Encephalopsin mRNAs were mainly detected in the ventral skin transcriptome. In parallel, immunolocalization of the encephalopsin within the ventral skin of the shark suggests a functional relation with the photophores, i.e. epidermal light-producing organs. We hypothesize that extraocular photoreception might be involved in the bioluminescence control possibly acting on the shutter opening and/or the photocyte activity itself. The newly generated reference transcriptome provides a valuable resource for further understanding of the shark biology.


Assuntos
Perfilação da Expressão Gênica/métodos , Opsinas/metabolismo , Transcriptoma/genética , Animais , Transdução de Sinal Luminoso/fisiologia , Análise de Sequência de DNA/métodos , Tubarões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...