Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 74(21): 6598-605, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18791033

RESUMO

Extracting fungal mRNA from ectomycorrhizas (ECMs) and forest soil samples for monitoring in situ metabolic activities is a significant challenge when studying the role of ECMs in biogeochemical cycles. A robust, simple, rapid, and effective method was developed for extracting RNA from rhizospheric soil and ECMs by adapting previous grinding and lysis methods. The quality and yield of the extracted RNA were sufficient to be used for reverse transcription. RNA extracted from ECMs of Lactarius quietus in a 100-year-old oak stand was used to construct a cDNA library and sequence expressed sequence tags. The transcripts of many genes involved in primary metabolism and in the degradation of organic matter were found. The transcription levels of four targeted fungal genes (glutamine synthase, a general amino acid transporter, a tyrosinase, and N-acetylhexosaminidase) were measured by quantitative reverse transcription-PCR in ECMs and in the ectomycorrhizospheric soil (the soil surrounding the ECMs containing the extraradical mycelium) in forest samples. On average, levels of gene expression for the L. quietus ECM root tips were similar to those for the extraradical mycelium, although gene expression varied up to 10-fold among the samples. This study demonstrates that gene expression from ECMs and soil can be analyzed. These results provide new perspectives for investigating the role of ectomycorrhizal fungi in the functioning of forest ecosystems.


Assuntos
Basidiomycota/genética , Perfilação da Expressão Gênica , Quercus/microbiologia , Microbiologia do Solo , Clonagem Molecular , DNA Fúngico/química , DNA Fúngico/genética , Etiquetas de Sequências Expressas , Dados de Sequência Molecular , Micorrizas/genética , RNA Fúngico/genética , RNA Fúngico/isolamento & purificação , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Árvores
2.
Nature ; 452(7183): 88-92, 2008 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-18322534

RESUMO

Mycorrhizal symbioses--the union of roots and soil fungi--are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants. Boreal, temperate and montane forests all depend on ectomycorrhizae. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains approximately 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are fundamental to sustainable plant productivity.


Assuntos
Basidiomycota/genética , Basidiomycota/fisiologia , Genoma Fúngico/genética , Micorrizas/genética , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Simbiose/fisiologia , Abies/microbiologia , Abies/fisiologia , Basidiomycota/enzimologia , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica , Genes Fúngicos/genética , Hifas/genética , Hifas/metabolismo , Micorrizas/enzimologia , Raízes de Plantas/fisiologia , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...