Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-27442111

RESUMO

Global transcriptome analysis of chicken whole blood to discover biomarkers of different phenotypes or physiological disorders has never been investigated so far. Whole blood provides significant advantages, allowing large scale and non-invasive sampling. However, generation of gene expression data from the blood of non-mammalian species remains a challenge, notably due to the nucleated red blood cells, hindering the use of well-established protocols. The aim of this study was to analyze the relevance of using whole blood cells (WB) to find biomarkers, instead of Peripheral Blood Mononuclear Cells (PBMC), usually chosen for immune challenges. RNA sources from WB and PBMC was characterized by microarray analysis. Our results show that the quality and quantity of RNA obtained from WB was suitable for further analyses, although the quality was lower than that from PBMC. The transcriptome profiling comparison revealed that the majority of genes were expressed in both WB and PBMC. Hemoglobin subunits were the major transcripts in WB, whereas the most enriched biological process was related to protein catabolic process. Most of the over-represented transcripts in PBMC were implicated in functions specific to thrombocytes, like coagulation and platelet activation, probably due to the large proportion of this nucleated cell type in chicken PBMC. Functions related to B and T cells and to other immune functions were also enriched in the PBMC subset. We conclude that WB is more suitable for large scale immunity oriented studies and other biological processes that have been poorly investigated so far.


Assuntos
Biomarcadores/sangue , Proteínas Sanguíneas/genética , Galinhas/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leucócitos Mononucleares/metabolismo , Transcriptoma/genética , Animais , Células Cultivadas , Galinhas/crescimento & desenvolvimento , Biologia Computacional , Genoma/genética , Masculino , Anotação de Sequência Molecular , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
BMC Genomics ; 17: 329, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27142519

RESUMO

BACKGROUND: Meat type chickens have limited capacities to cope with high environmental temperatures, this sometimes leading to mortality on farms and subsequent economic losses. A strategy to alleviate this problem is to enhance adaptive capacities to face heat exposure using thermal manipulation (TM) during embryogenesis. This strategy was shown to improve thermotolerance during their life span. The aim of this study was to determine the effects of TM (39.5 °C, 12 h/24 vs 37.8 °C from d7 to d16 of embryogenesis) and of a subsequent heat challenge (32 °C for 5 h) applied on d34 on gene expression in the Pectoralis major muscle (PM). A chicken gene expression microarray (8 × 60 K) was used to compare muscle gene expression profiles of Control (C characterized by relatively high body temperatures, Tb) and TM chickens (characterized by a relatively low Tb) reared at 21 °C and at 32 °C (CHC and TMHC, respectively) in a dye-swap design with four comparisons and 8 broilers per treatment. Real-time quantitative PCR (RT-qPCR) was subsequently performed to validate differential expression in each comparison. Gene ontology, clustering and network building strategies were then used to identify pathways affected by TM and heat challenge. RESULTS: Among the genes differentially expressed (DE) in the PM (1.5 % of total probes), 28 were found to be differentially expressed between C and TM, 128 between CHC and C, and 759 between TMHC and TM. No DE gene was found between TMHC and CHC broilers. The majority of DE genes analyzed by RT-qPCR were validated. In the TM/C comparison, DE genes were involved in energy metabolism and mitochondrial function, cell proliferation, vascularization and muscle growth; when comparing heat-exposed chickens to their own controls, TM broilers developed more specific pathways than C, especially involving genes related to metabolism, stress response, vascularization, anti-apoptotic and epigenetic processes. CONCLUSIONS: This study improved the understanding of the long-term effects of TM on PM muscle. TM broilers displaying low Tb may have lower metabolic intensity in the muscle, resulting in decreased metabolic heat production, whereas modifications in vascularization may enhance heat loss. These specific changes could in part explain the better adaptation of TM broilers to heat.


Assuntos
Galinhas/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Músculos Peitorais/embriologia , Animais , Embrião de Galinha , Galinhas/genética , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Temperatura Alta , Desenvolvimento Muscular , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos
3.
PLoS One ; 10(10): e0139517, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26431526

RESUMO

In mammals, insulin-sensitive GLUTs, including GLUT4, are recruited to the plasma membrane of adipose and muscle tissues in response to insulin. The GLUT4 gene is absent from the chicken genome, and no functional insulin-sensitive GLUTs have been characterized in chicken tissues to date. A nucleotide sequence is predicted to encode a chicken GLUT12 ortholog and, interestingly, GLUT12 has been described to act as an insulin-sensitive GLUT in mammals. It encodes a 596 amino acid protein exhibiting 71% identity with human GLUT12. First, we present the results of a phylogenetic study showing the stability of this gene during evolution of vertebrates. Second, tissue distribution of chicken SLC2A12 mRNA was characterized by RT-PCR. It was predominantly expressed in skeletal muscle and heart. Protein distribution was analysed by Western blotting using an anti-human GLUT12 antibody directed against a highly conserved region (87% of identity). An immuno-reactive band of the expected size (75kDa) was detected in the same tissues. Third a physiological characterization was performed: SLC2A12 mRNA levels were significantly lowered in fed chickens subjected to insulin immuno-neutralization. Finally, recruitment of immuno-reactive GLUT12 to the muscle plasma membrane was increased following 1h of intraperitoneal insulin administration (compared to a control fasted state). Thus insulin administration elicited membrane GLUT12 recruitment. In conclusion, these results suggest that the facilitative glucose transporter protein GLUT12 could act in chicken muscle as an insulin-sensitive transporter that is qualitatively similar to GLUT4 in mammals.


Assuntos
Galinhas/genética , Proteínas Facilitadoras de Transporte de Glucose/genética , Animais , Galinhas/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Coração/fisiologia , Insulina/metabolismo , Masculino , Músculo Esquelético/metabolismo , Filogenia , RNA Mensageiro/genética , Distribuição Tecidual/genética
4.
PLoS One ; 9(9): e105339, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25180913

RESUMO

Fast-growing chickens have a limited ability to tolerate high temperatures. Thermal manipulation during embryogenesis (TM) has previously been shown to lower chicken body temperature (Tb) at hatching and to improve thermotolerance until market age, possibly resulting from changes in metabolic regulation. The aim of this study was to evaluate the long-term effects of TM (12 h/d, 39.5°C, 65% RH from d 7 to 16 of embryogenesis vs. 37.8°C, 56% RH continuously) and of a subsequent heat challenge (32°C for 5 h at 34 d) on the mRNA expression of metabolic genes and cell signaling in the Pectoralis major muscle and the liver. Gene expression was analyzed by RT-qPCR in 8 chickens per treatment, characterized by low Tb in the TM groups and high Tb in the control groups. Data were analyzed using the general linear model of SAS considering TM and heat challenge within TM as main effects. TM had significant long-term effects on thyroid hormone metabolism by decreasing the muscle mRNA expression of deiodinase DIO3. Under standard rearing conditions, the expression of several genes involved in the regulation of energy metabolism, such as transcription factor PGC-1α, was affected by TM in the muscle, whereas for other genes regulating mitochondrial function and muscle growth, TM seemed to mitigate the decrease induced by the heat challenge. TM increased DIO2 mRNA expression in the liver (only at 21°C) and reduced the citrate synthase activity involved in the Krebs cycle. The phosphorylation level of p38 Mitogen-activated-protein kinase regulating the cell stress response was higher in the muscle of TM groups compared to controls. In conclusion, markers of energy utilization and growth were either changed by TM in the Pectoralis major muscle and the liver by thermal manipulation during incubation as a possible long-term adaptation limiting energy metabolism, or mitigated during heat challenge.


Assuntos
Temperatura Corporal , Galinhas/crescimento & desenvolvimento , Desenvolvimento Embrionário , Fígado/metabolismo , Músculos/metabolismo , Animais , Embrião de Galinha , Galinhas/genética , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Insulina/metabolismo , Fígado/enzimologia , Músculos/enzimologia , Fosforilação , Proteínas Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Estresse Fisiológico , Fatores de Tempo
5.
Am J Physiol Regul Integr Comp Physiol ; 301(1): R201-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21508290

RESUMO

The avian uncoupling protein 3 (UCP3), mainly expressed in muscle tissue, could be involved in fatty acid (FA) metabolism, limitation of reactive oxygen species production, and/or nonshivering thermogenesis. We recently demonstrated that UCP3 mRNA expression was increased by isoproterenol (Iso), a ß-agonist, in chicken Pectoralis major. This upregulation was associated with changes in FA metabolism and variations in the activation of AMP-activated protein kinase (AMPK) and in the expression of the transcription factors peroxisome proliferator-activated receptor (PPAR)α, PPARß/δ, and PPARγ coactivator-1α (PGC-1α). The aim of the present study was to elucidate the mechanisms involving AMPK and PPARα in UCP3 regulation in primary cultures of chick myoblasts. Avian UCP3 mRNA expression, associated with p38 mitogen-activated protein kinase (p38 MAPK) activation, was increased by Iso and/or FAs. The PKA pathway mediated the effects of Iso on UCP3 expression. FA stimulation also led to AMPK activation. Furthermore, the direct involvement of AMPK on UCP3 regulation was shown by using 5-aminoimidazole-4-carboxyamide ribonucleoside and Compound C. The use of the p38 MAPK inhibitor SB202190, which was associated with AMPK activation, also dramatically enhanced UCP3 mRNA expression. Finally the PPARα agonist WY-14643 strongly increased UCP3 mRNA expression. This study highlights the control of UCP3 expression by the ß-adrenergic system and FA in chick myoblasts and demonstrates that its expression is directly regulated by AMPK and by PPARα. Overexpression of avian UCP3 might modulate energy utilization or limit oxidative stress when mitochondrial metabolism of FA is triggered by catecholamines.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Aviárias/metabolismo , Galinhas/fisiologia , Ácidos Graxos/farmacologia , Isoproterenol/farmacologia , Proteínas Mitocondriais/metabolismo , Mioblastos Esqueléticos/metabolismo , PPAR alfa/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Metabolismo Energético/fisiologia , Proteínas de Desacoplamento Mitocondrial , Modelos Animais , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/efeitos dos fármacos , Estresse Oxidativo/fisiologia , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-17081789

RESUMO

We evaluated the effects of genotype (Muscovy, Pekin and their crossbreed hinny and mule ducks) and feeding levels (overfeeding between 12 and 14 weeks of age vs ad libitum feeding) on energy metabolism and lipid deposition in breast muscle of ducks. Samples of breast muscle (Pectoralis major) were collected at 14 weeks of age from 8 birds per group. Overfeeding induced an accumulation of lipids in breast muscle (1.5- to 1.7-fold, depending on genotype) mainly induced by triglyceride deposition. It also induced a considerable increase in the amounts (expressed as g/100 g of tissue) of saturated and mono-unsaturated fatty acids (SFA, MUFA), while the amounts of poly-unsaturated fatty acids (PUFA) remained unchanged in hinny and Muscovy ducks or slightly increased in Pekin and mule ducks. In breast muscle, overfeeding decreased the activity of the main enzymes involved in lipogenesis from glucose (glucose-6-phosphate dehydrogenase, G6PDH, malic enzyme, ME, acetyl CoA carboxylase, ACX). Lipoprotein lipase (LPL) activity in Pectoralis major muscle was also significantly decreased (-21%). The ability of muscle tissues to catabolize long-chain fatty acids, as assessed by beta-hydroxyacyl CoA dehydrogenase (HAD) activity, was increased in Pectoralis major muscle, as was cytochrome-c oxidase (COX) activity. Hybrid and Pekin ducks exhibited higher levels of ACX and LPL activity in Pectoralis major muscle than Muscovy ducks, suggesting a greater ability to synthesise lipids in situ, and to take up circulating lipids. Total lipid content in breast muscle of hybrid and Pekin ducks was higher than in that of Muscovy ducks. In hybrid and Pekin ducks, lipid composition of breast muscle was characterized by higher amounts of triglycerides, SFA and MUFA than in Muscovy ducks. Finally, oxidative metabolism was greater in Pectoralis major muscles of hybrid and Pekin ducks than in Muscovy ducks, suggesting an adaptative strategy of muscle energy metabolism according to lipid level.


Assuntos
Patos/genética , Patos/metabolismo , Ingestão de Alimentos , Metabolismo Energético , Metabolismo dos Lipídeos , Músculos Peitorais/metabolismo , Ração Animal , Animais , Colesterol/metabolismo , Cruzamentos Genéticos , Feminino , Genótipo , Lipase Lipoproteica/metabolismo , Masculino , Músculos Peitorais/química , Fosfolipídeos/metabolismo , Triglicerídeos/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-16963298

RESUMO

We evaluated the effects of genotype (Muscovy, Pekin and their crossbreed hinny and mule ducks) and feeding levels (overfeeding between 12 and 14 weeks of age vs ad libitum feeding) on liver ability for lipogenesis and lipid secretion in ducks. Samples of liver and blood were collected at 14 weeks of age from 8 birds per group. Plasma levels of insulin was considerably increased in overfed ducks (1.9-fold), stimulating the hepatic activity of the main enzymes involved in lipogenesis from glucose (glucokinase, GK, glucose-6-phosphate dehydrogenase, G6PDH, malic enzyme, ME, acetyl CoA carboxylase, ACX), while cytochrome-c oxidase (COX) activity, indicating overall oxidation ability of energy-yielding substrates, remained unchanged. Plasma levels of triglycerides, phospholipids and total cholesterol were therefore increased (1.9, 3.7, 1.6 and 1.6-fold, respectively). Glycaemia also significantly increased (+8%). Pekin ducks exhibited higher levels of GK and G6PDH activity in the liver than Muscovy ducks, suggesting a greater ability to use glucose consistent with their lower glycaemia. Muscovy ducks had greater ACX activity, suggesting greater ability to synthesise lipids. However, plasma lipid levels were much higher in Pekin ducks than in Muscovy ducks, suggesting a greater ability to export lipids from the liver. Values for the different criteria measured in this study were intermediate or similar in hinny and mule ducks to those of parental species. The high values for GK, G6PDH, ME and ACX activity in hybrid ducks enabled them to produce heavy fatty livers with the same chemical and lipid composition as Muscovy ducks and characterised by high amounts of triglycerides (around 96% of total lipids), and saturated and mono-unsaturated fatty acids.


Assuntos
Patos/genética , Patos/metabolismo , Ingestão de Alimentos , Metabolismo dos Lipídeos , Fígado/metabolismo , Ração Animal , Animais , Glicemia , Feminino , Genótipo , Glucose/metabolismo , Insulina/sangue , Lipídeos/sangue , Lipogênese , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...