Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(4-1): 044126, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755925

RESUMO

Odd viscoelastic materials are constrained by fewer symmetries than their even counterparts. The breaking of these symmetries allows these materials to exhibit different features, which have attracted considerable attention in recent years. Immersing a bead in such complex fluids allows for probing their physical properties, highlighting signatures of their oddity and exploring the consequences of these broken symmetries. We present the conditions under which the activity of an odd viscoelastic fluid can give rise to linear instabilities in the motion of the probe particle, and we unveil how the features of the probe particle dynamics depend on the oddity and activity of the viscoelastic medium in which it is immersed.

2.
Phys Rev Lett ; 132(7): 078301, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38427854

RESUMO

We study the impact of nematic alignment on scalar active matter in the disordered phase. We show that nematic torques control the emergent physics of particles interacting via pairwise forces and can either induce or prevent phase separation. The underlying mechanism is a fluctuation-induced renormalization of the mass of the polar field that generically arises from nematic torques. The correlations between the fluctuations of the polar and nematic fields indeed conspire to increase the particle persistence length, contrary to what phenomenological computations predict. This effect is generic and our theory also quantitatively accounts for how nematic torques enhance particle accumulation along confining boundaries and opposes demixing in mixtures of active and passive particles.

3.
Elife ; 122023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117039

RESUMO

How morphogenetic movements are robustly coordinated in space and time is a fundamental open question in biology. We study this question using the wing of Drosophila melanogaster, an epithelial tissue that undergoes large-scale tissue flows during pupal stages. Previously, we showed that pupal wing morphogenesis involves both cellular behaviors that allow relaxation of mechanical tissue stress, as well as cellular behaviors that appear to be actively patterned (Etournay et al., 2015). Here, we show that these active cellular behaviors are not guided by the core planar cell polarity (PCP) pathway, a conserved signaling system that guides tissue development in many other contexts. We find no significant phenotype on the cellular dynamics underlying pupal morphogenesis in mutants of core PCP. Furthermore, using laser ablation experiments, coupled with a rheological model to describe the dynamics of the response to laser ablation, we conclude that while core PCP mutations affect the fast timescale response to laser ablation they do not significantly affect overall tissue mechanics. In conclusion, our work shows that cellular dynamics and tissue shape changes during Drosophila pupal wing morphogenesis do not require core PCP as an orientational guiding cue.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Pupa/genética , Asas de Animais/fisiologia , Morfogênese/genética , Polaridade Celular , Mutação
4.
Phys Rev Lett ; 131(18): 188401, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977637

RESUMO

We investigate how randomly oriented cell traction forces lead to fluidization in a vertex model of epithelial tissues. We find that the fluidization occurs at a critical value of the traction force magnitude F_{c}. We show that this transition exhibits critical behavior, similar to the yielding transition of sheared amorphous solids. However, we find that it belongs to a different universality class, even though it satisfies the same scaling relations between critical exponents established in the yielding transition of sheared amorphous solids. Our work provides a fluidization mechanism through active force generation that could be relevant in biological tissues.


Assuntos
Tração , Epitélio
5.
Phys Rev E ; 108(2): L023101, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723786

RESUMO

When a body moves through a fluid, it can experience a force orthogonal to its movement called lift force. Odd viscous fluids break parity and time-reversal symmetry, suggesting the existence of an odd lift force on tracer particles, even at vanishing Reynolds numbers and for symmetric geometries. It was previously found that an incompressible odd fluid cannot induce lift force on a tracer particle with no-slip boundary conditions, making signatures of odd viscosity in the two-dimensional bulk elusive. By computing the response matrix for a tracer particle, we show that an odd compressible fluid can produce an odd lift force. Using shell localization, we provide analytic expressions for the drag and odd lift forces acting on the tracer particle in a steady state and also at finite frequency. Importantly, we find that the existence of an odd lift force in a steady state requires taking into account the nonconservation of the fluid mass density due to the coupling between the two-dimensional surface and the three-dimensional bulk fluid.

6.
Phys Rev E ; 105(5-1): 054607, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706288

RESUMO

Active chiral viscoelastic materials exhibit elastic responses perpendicular to the applied stresses, referred to as odd elasticity. We use a covariant formulation of viscoelasticity combined with an entropy production analysis to show that odd elasticity is not only present in active systems but also in broad classes of passive chiral viscoelastic fluids. In addition, we demonstrate that linear viscoelastic chiral solids require activity in order to manifest odd elastic responses. To model the phenomenon of passive odd viscoelasticity we propose a chiral extension of Jeffreys model. We apply our covariant formalism in order to derive the dispersion relations of hydrodynamic modes and obtain clear imprints of odd viscoelastic behavior.

7.
Eur Phys J E Soft Matter ; 45(3): 29, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35320447

RESUMO

In amorphous solids as in tissues, neighbor exchanges can relax local stresses and allow the material to flow. In this paper, we use an anisotropic vertex model to study T1 rearrangements in polygonal cellular networks. We consider two different physical realizations of the active anisotropic stresses: (i) anisotropic bond tension and (ii) anisotropic cell stress. Interestingly, the two types of active stress lead to patterns of relative orientation of T1 transitions and cell elongation that are different. Our work suggests that these two realizations of anisotropic active stresses can be observed in vivo. We describe and explain these results through the lens of a continuum description of the tissue as an anisotropic active material. We furthermore discuss the energetics of the dynamic tissue and express the energy balance in terms of internal elastic energy, mechanical work, chemical work and heat. This allows us to define active T1 transitions that can perform mechanical work while consuming chemical energy.


Assuntos
Anisotropia
8.
Cells Dev ; 168: 203746, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34592496

RESUMO

Morphogenesis depends crucially on the complex rheological properties of cell tissues and on their ability to maintain mechanical integrity while rearranging at long times. In this paper, we study the rheology of polygonal cellular networks described by a vertex model in the presence of fluctuations. We use a triangulation method to decompose shear into cell shape changes and cell rearrangements. Considering the steady-state stress under constant shear, we observe nonlinear shear-thinning behavior at all magnitudes of the fluctuations, and an even stronger nonlinear regime at lower values of the fluctuations. We successfully capture this nonlinear rheology by a mean-field model that describes the tissue in terms of cell elongation and cell rearrangements. We furthermore introduce anisotropic active stresses in the vertex model and analyze their effect on rheology. We include this anisotropy in the mean-field model and show that it recapitulates the behavior observed in the simulations. Our work clarifies how tissue rheology is related to stochastic cell rearrangements and provides a simple biophysical model to describe biological tissues. Further, it highlights the importance of nonlinearities when discussing tissue mechanics.


Assuntos
Reologia , Anisotropia , Forma Celular , Morfogênese , Reologia/métodos
9.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33947815

RESUMO

We use a theoretical approach to examine the effect of a radial fluid flow or electric current on the growth and homeostasis of a cell spheroid. Such conditions may be generated by a drain of micrometric diameter. To perform this analysis, we describe the tissue as a continuum. We include active mechanical, electric, and hydraulic components in the tissue material properties. We consider a spherical geometry and study the effect of the drain on the dynamics of the cell aggregate. We show that a steady fluid flow or electric current imposed by the drain could be able to significantly change the spheroid long-time state. In particular, our work suggests that a growing spheroid can systematically be driven to a shrinking state if an appropriate external field is applied. Order-of-magnitude estimates suggest that such fields are of the order of the indigenous ones. Similarities and differences with the case of tumors and embryo development are briefly discussed.


Assuntos
Biofísica , Esferoides Celulares/química , Animais , Humanos , Modelos Biológicos , Neoplasias
10.
Proc Natl Acad Sci U S A ; 116(39): 19264-19273, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31492815

RESUMO

We discuss the physical mechanisms that promote or suppress the nucleation of a fluid-filled lumen inside a cell assembly or a tissue. We discuss lumen formation in a continuum theory of tissue material properties in which the tissue is described as a 2-fluid system to account for its permeation by the interstitial fluid, and we include fluid pumping as well as active electric effects. Considering a spherical geometry and a polarized tissue, our work shows that fluid pumping and tissue flexoelectricity play a crucial role in lumen formation. We furthermore explore the large variety of long-time states that are accessible for the cell aggregate and its lumen. Our work reveals a role of the coupling of mechanical, electrical, and hydraulic phenomena in tissue lumen formation.


Assuntos
Líquido Extracelular/metabolismo , Espaço Extracelular/fisiologia , Modelos Biológicos , Fenômenos Biofísicos , Fenômenos Eletrofisiológicos , Hidrodinâmica , Permeabilidade , Esferoides Celulares/fisiologia
11.
Phys Rev E ; 95(1-1): 012107, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28208463

RESUMO

We derive the necessary conditions for implementing a regulator that depends on both momentum and frequency in the nonperturbative renormalization-group flow equations of out-of-equilibrium statistical systems. We consider model A as a benchmark and compute its dynamical critical exponent z. This allows us to show that frequency regulators compatible with causality and the fluctuation-dissipation theorem can be devised. We show that when the principle of minimal sensitivity (PMS) is employed to optimize the critical exponents η, ν, and z, the use of frequency regulators becomes necessary to make the PMS a self-consistent criterion.

12.
Phys Rev E ; 96(1-1): 012149, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29347257

RESUMO

The anisotropic model for landscapes erosion proposed by Pastor-Satorras and Rothman [R. Pastor-Satorras and D. H. Rothman, Phys. Rev. Lett. 80, 4349 (1998)PRLTAO0031-900710.1103/PhysRevLett.80.4349] is believed to capture the physics of erosion at intermediate length scale (≲3 km), and to account for the large value of the roughness exponent α observed in real data at this scale. Our study of this model-conducted using the nonperturbative renormalization group-concludes on the nonuniversality of this exponent because of the existence of a line of fixed points. Thus the roughness exponent depends (weakly) on the details of the soil and the erosion mechanisms. We conjecture that this feature, while preserving the generic scaling observed in real data, could explain the wide spectrum of values of α measured for natural landscapes.

13.
Phys Rev Lett ; 117(10): 100601, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27636462

RESUMO

For reaction-diffusion processes with at most bimolecular reactants, we derive well-behaved, numerically tractable, exact Langevin equations that govern a stochastic variable related to the response field in field theory. Using duality relations, we show how the particle number and other quantities of interest can be computed. Our work clarifies long-standing conceptual issues encountered in field-theoretical approaches and paves the way for systematic numerical and theoretical analyses of reaction-diffusion problems.

14.
Artigo em Inglês | MEDLINE | ID: mdl-23848724

RESUMO

The majority of dynamical studies in power systems focus on the high-voltage transmission grids where models consider large generators interacting with crude aggregations of individual small loads. However, new phenomena have been observed indicating that the spatial distribution of collective, nonlinear contribution of these small loads in the low-voltage distribution grid is crucial to the outcome of these dynamical transients. To elucidate the phenomenon, we study the dynamics of voltage and power flows in a spatially extended distribution feeder (circuit) connecting many asynchronous induction motors and discover that this relatively simple 1+1 (space+time) dimensional system exhibits a plethora of nontrivial spatiotemporal effects, some of which may be dangerous for power system stability. Long-range motor-motor interactions mediated by circuit voltage and electrical power flows result in coexistence and segregation of spatially extended phases defined by individual motor states, a "normal" state where the motors' mechanical (rotation) frequency is slightly smaller than the nominal frequency of the basic ac flows and a "stalled" state where the mechanical frequency is small. Transitions between the two states can be initiated by a perturbation of the voltage or base frequency at the head of the distribution feeder. Such behavior is typical of first-order phase transitions in physics, and this 1+1 dimensional model shows many other properties of a first-order phase transition with the spatial distribution of the motors' mechanical frequency playing the role of the order parameter. In particular, we observe (a) propagation of the phase-transition front with the constant speed (in very long feeders) and (b) hysteresis in transitions between the normal and stalled (or partially stalled) phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...