Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mol Cell ; 82(4): 816-832.e12, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35081363

RESUMO

Gene silencing by heterochromatin plays a crucial role in cell identity. Here, we characterize the localization, the biogenesis, and the function of an atypical heterochromatin, which is simultaneously enriched in the typical H3K9me3 mark and in H3K36me3, a histone mark usually associated with gene expression. We identified thousands of dual regions in mouse embryonic stem (ES) cells that rely on the histone methyltransferases SET domain bifurcated 1 (SETDB1) and nuclear set domain (NSD)-containing proteins to generate H3K9me3 and H3K36me3, respectively. Upon SETDB1 removal, dual domains lose both marks, gain signatures of active enhancers, and come into contact with upregulated genes, suggesting that it might be an important pathway by which genes are controlled by heterochromatin. In differentiated tissues, a subset of these dual domains is destabilized and becomes enriched in active enhancer marks, providing a mechanistic insight into the involvement of heterochromatin in the maintenance of cell identity.


Assuntos
Montagem e Desmontagem da Cromatina , Metilação de DNA , Elementos Facilitadores Genéticos , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/enzimologia , Processamento de Proteína Pós-Traducional , Animais , Linhagem Celular , Sequenciamento de Cromatina por Imunoprecipitação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Heterocromatina/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Metilação , Camundongos , RNA-Seq , Transcriptoma
3.
Front Microbiol ; 8: 1753, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033901

RESUMO

Antimicrobial use in beef cattle can increase antimicrobial resistance prevalence in their enteric bacteria, including potential pathogens such as Escherichia coli. These bacteria can contaminate animal products at slaughterhouses and cause food-borne illness, which can be difficult to treat if it is due to antimicrobial resistant bacteria. One potential intervention to reduce the dissemination of resistant bacteria from feedlot to consumer is to impose a withdrawal period after antimicrobial use, similar to the current withdrawal period designed to prevent drug residues in edible animal meat. We investigated tetracycline resistance in generic E. coli in the bovine large intestine during and after antimicrobial treatment by building a mathematical model of oral chlortetracycline pharmacokinetics-pharmacodynamics and E. coli population dynamics. We tracked three E. coli subpopulations (susceptible, intermediate, and resistant) during and after treatment with each of three United States chlortetracycline indications (liver abscess reduction, disease control, disease treatment). We compared the proportion of resistant E. coli before antimicrobial use to that at several time points after treatment and found a greater proportion of resistant enteric E. coli after the current withdrawal periods than prior to treatment. In order for the proportion of resistant E. coli in the median beef steer to return to the pre-treatment level, withdrawal periods of 15 days after liver abscess reduction dosing (70 mg daily), 31 days after disease control dosing (350 mg daily), and 36 days after disease treatment dosing (22 mg/kg bodyweight for 5 days) are required in this model. These antimicrobial resistance withdrawal periods would be substantially longer than the current U.S. withdrawals of 0-2 days or Canadian withdrawals of 5-10 days. One published field study found similar time periods necessary to reduce the proportion of resistant E. coli following chlortetracycline disease treatment to those suggested by this model, but additional carefully designed field studies are necessary to confirm the model results. This model is limited to biological processes within the cattle and does not include resistance selection in the feedlot environment or co-selection of chlortetracycline resistance following other antimicrobial use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...