Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 436
Filtrar
1.
Quant Imaging Med Surg ; 14(7): 4319-4332, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39022226

RESUMO

Background: Magnetic resonance imaging (MRI) cartilage transverse relaxation time (T2) reflects cartilage composition, mechanical properties, and early osteoarthritis (OA). T2 analysis requires cartilage segmentation. In this study, we clinically validate fully automated T2 analysis at 1.5 Tesla (T) in anterior cruciate ligament (ACL)-injured and healthy knees. Methods: We studied 71 participants: 20 ACL-injured patients with, and 22 without dynamic knee instability, 13 with surgical reconstruction, and 16 healthy controls. Sagittal multi-echo-spin-echo (MESE) MRIs were acquired at baseline and 1-year follow-up. Femorotibial cartilage was segmented manually; a convolutional neural network (CNN) algorithm was trained on MRI data from the same scanner. Results: Dice similarity coefficients (DSCs) of automated versus manual segmentation in the 71 participants were 0.83 (femora) and 0.89 (tibiae). Deep femorotibial T2 was similar between automated (45.7±2.6 ms) and manual (45.7±2.7 ms) segmentation (P=0.828), whereas superficial layer T2 was slightly overestimated by automated analysis (53.2±2.2 vs. 52.1±2.1 ms for manual; P<0.001). T2 correlations were r=0.91-0.99 for deep and r=0.86-0.97 for superficial layers across regions. The only statistically significant T2 increase over 1 year was observed in the deep layer of the lateral femur [standardized response mean (SRM) =0.58 for automated vs. 0.52 for manual analysis; P<0.001]. There was no relevant difference in baseline/longitudinal T2 values/changes between the ACL-injured groups and healthy participants, with either segmentation method. Conclusions: This clinical validation study suggests that automated cartilage T2 analysis from MESE at 1.5T is technically feasible and accurate. More efficient 3D sequences and longer observation intervals may be required to detect the impact of ACL injury induced joint instability on cartilage composition (T2).

2.
Acta Biomater ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002920

RESUMO

Magnesium as a biodegradable material offers promising results in recent studies of different maxillo-facial fracture models. To overcome adverse effects caused by the fast corrosion of pure magnesium in fluid surroundings, various alloys, and surface modifications are tested in animal models. In specified cases, magnesium screws already appeared for clinical use in maxillofacial surgery. The present study aims to compare the bone healing outcome in a non-load-bearing fracture scenario of the forehead in sheep when fixed with standard-sized WE43 magnesium fixation plates and screws with plasma electrolytic oxidation (PEO) surface modification in contrast to titanium osteosynthesis. Surgery was performed on 24 merino mix sheep. The plates and screws were explanted en-bloc with the surrounding tissue after four and twelve weeks. The outcome of bone healing was investigated with micro-computed tomography, histological, immunohistological, and fluorescence analysis. There was no significant difference between groups concerning the bone volume, bone volume/ total volume, and newly formed bone in volumetric and histological analysis at both times of investigation. The fluorescence analysis revealed a significantly lower signal in the magnesium group after one week, although there was no difference in the number of osteoclasts per mm2. The magnesium group had significantly fewer vessels per mm2 in the healing tissue. In conclusion, the non-inferiority of WE43-based magnesium implants with PEO surface modification was verified concerning fracture healing under non-load-bearing conditions in a defect model. STATEMENT OF SIGNIFICANCE: Titanium implants, the current gold standard of fracture fixation, can lead to adverse effects linked to the implant material and often require surgical removal. Therefore, degradable metals like the magnesium alloy WE43 with plasma electrolytic oxidation (PEO) surface modification gained interest. Yet, miniplates of this alloy with PEO surface modification have not been examined in a fracture defect model of the facial skeleton in a large animal model. This study shows, for the first time, the non-inferiority of magnesium miniplates compared to titanium miniplates. In radiological and histological analysis, bone healing was undisturbed. Magnesium miniplates can reduce the number of interventions for implant removal, thus reducing the risk for the patient and minimizing the costs.

3.
Front Endocrinol (Lausanne) ; 15: 1394263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904042

RESUMO

Introduction: Caloric restriction (CR) is a nutritional intervention that increases life expectancy while lowering the risk for cardio-metabolic disease. Its effects on bone health, however, remain controversial. For instance, CR has been linked to increased accumulation of bone marrow adipose tissue (BMAT) in long bones, a process thought to elicit detrimental effects on bone. Qualitative differences have been reported in BMAT in relation to its specific anatomical localization, subdividing it into physiological and potentially pathological BMAT. We here examine the local impact of CR on bone composition, microstructure and its endocrine profile in the context of aging. Methods: Young and aged male C57Bl6J mice were subjected to CR for 8 weeks and were compared to age-matched littermates with free food access. We assessed bone microstructure and BMAT by micro-CT, bone fatty acid and transcriptomic profiles, and bone healing. Results: CR increased tibial BMAT accumulation and adipogenic gene expression. CR also resulted in elevated fatty acid desaturation in the proximal and mid-shaft regions of the tibia, thus more closely resembling the biochemical lipid profile of the distally located, physiological BMAT. In aged mice, CR attenuated trabecular bone loss, suggesting that CR may revert some aspects of age-related bone dysfunction. Cortical bone, however, was decreased in young mice on CR and remained reduced in aged mice, irrespective of dietary intervention. No negative effects of CR on bone regeneration were evident in either young or aged mice. Discussion: Our findings indicate that the timing of CR is critical and may exert detrimental effects on bone biology if administered during a phase of active skeletal growth. Conversely, CR exerts positive effects on trabecular bone structure in the context of aging, which occurs despite substantial accumulation of BMAT. These data suggest that the endocrine profile of BMAT, rather than its fatty acid composition, contributes to healthy bone maintenance in aged mice.


Assuntos
Adipócitos , Envelhecimento , Restrição Calórica , Osso Esponjoso , Camundongos Endogâmicos C57BL , Animais , Masculino , Restrição Calórica/métodos , Camundongos , Envelhecimento/fisiologia , Osso Esponjoso/patologia , Adipócitos/metabolismo , Medula Óssea/metabolismo , Tíbia/metabolismo
4.
Clin Oral Investig ; 28(7): 358, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842694

RESUMO

OBJECTIVES: To establish an analysis pipeline for the volumetric evaluation of the osteotomy site after bilateral sagittal split osteotomy (BSSO). PATIENTS AND METHODS: Cone-beam computed tomography (CBCT) was performed before, directly after BSSO, and 6-12 months after surgery. Image segmentations of each osteotomy gap data set were performed manually by four physicians and were compared to a semi-automatic segmentation approach. RESULTS: Five patients with a total of ten osteotomy gaps were included. The mean interclass correlation coefficient (ICC) of individual patients was 0.782 and the standard deviation 0.080 when using the manual segmentation approach. However, the mean ICC of the evaluation of anatomical sites and time points separately was 0.214, suggesting a large range of deviation within the manual segmentation of each rater. The standard deviation was 0.355, further highlighting the extent of the variation. In contrast, the semi-automatic approach had a mean ICC of 0.491 and a standard deviation of 0.365, which suggests a relatively higher agreement among the operators compared to the manual segmentation approach. Furthermore, the volume of the osteotomy gap in the semi-automatic approach showed the same tendency in every site as the manual segmentation approach, but with less deviation. CONCLUSION: The semi-automatic approach developed in the present study proved to be valid as a standardised method with high repeatability. Such image analysis methods could help to quantify the progression of bone healing after BSSO and beyond, eventually facilitating the earlier identification of patients with retarded healing.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Osteotomia Sagital do Ramo Mandibular , Humanos , Tomografia Computadorizada de Feixe Cônico/métodos , Projetos Piloto , Osteotomia Sagital do Ramo Mandibular/métodos , Feminino , Masculino , Adulto , Resultado do Tratamento
5.
Biomaterials ; 309: 122614, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38788455

RESUMO

The extracellular matrix is known to impact cell function during regeneration by modulating growth factor signaling. However, how the mechanical properties and structure of biomaterials can be used to optimize the cellular response to growth factors is widely neglected. Here, we engineered a macroporous biomaterial to study cellular signaling in environments that mimic the mechanical stiffness but also the mechanical heterogeneity of native extracellular matrix. We found that the mechanical interaction of cells with the heterogeneous and non-linear deformation properties of soft matrices (E < 5 kPa) enhances BMP-2 growth factor signaling with high relevance for tissue regeneration. In contrast, this effect is absent in homogeneous hydrogels that are often used to study cell responses to mechanical cues. Live cell imaging and in silico finite element modeling further revealed that a subpopulation of highly active, fast migrating cells is responsible for most of the material deformation, while a second, less active population experiences this deformation as an extrinsic mechanical stimulation. At an overall low cell density, the active cell population dominates the process, suggesting that it plays a particularly important role in early tissue healing scenarios where cells invade tissue defects or implanted biomaterials. Taken together, our findings demonstrate that the mechanical heterogeneity of the natural extracellular matrix environment plays an important role in triggering regeneration by endogenously acting growth factors. This suggests the inclusion of such mechanical complexity as a design parameter in future biomaterials, in addition to established parameters such as mechanical stiffness and stress relaxation.


Assuntos
Materiais Biocompatíveis , Proteína Morfogenética Óssea 2 , Matriz Extracelular , Hidrogéis , Transdução de Sinais , Proteína Morfogenética Óssea 2/metabolismo , Materiais Biocompatíveis/química , Humanos , Matriz Extracelular/metabolismo , Hidrogéis/química , Animais , Camundongos , Movimento Celular
6.
Am J Sports Med ; 52(7): 1804-1812, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761007

RESUMO

BACKGROUND: After posterior cruciate ligament reconstruction (PCLR), functional deficits at the knee can persist. It remains unclear if neighboring joints compensate for the knee during demanding activities of daily living. PURPOSE: To assess long-term alterations in lower limb mechanics in patients after PCLR. STUDY DESIGN: Descriptive laboratory study. METHODS: A total of 28 patients who had undergone single-bundle unilateral isolated or combined PCLR performed stair navigation, squat, sit-to-stand, and stand-to-sit tasks at 8.2 ± 2.2 years after surgery. Motion capture and force plates were used to collect kinematic and kinetic data. Then, 3-dimensional hip, knee, and ankle kinematic data of the reconstructed limb were compared with those of the contralateral limb using statistical parametric mapping. RESULTS: Side-to-side differences at the knee were primarily found during upward-driven movements at 8 years after surgery. The reconstructed knee exhibited lower internal rotation during the initial loading phase of stair ascent versus the contralateral knee (P = .005). During the sit-to-stand task, higher flexion angles during the midcycle (P = .017) and lower external rotation angles (P = .049) were found in the reconstructed knee; sagittal knee (P = .001) and hip (P = .016) moments were lower in the reconstructed limb than the contralateral limb. In downward-driven movements, side-to-side differences were minimal at the knee but prominent at the ankle and hip: during stair descent, the reconstructed ankle exhibited lower dorsiflexion and lower external rotation during the midcycle versus the contralateral ankle (P = .006 and P = .040, respectively). Frontal hip moments in the reconstructed limb were higher than those in the contralateral limb during the stand-to-sit task (P = .010); during squats, sagittal hip angles in the reconstructed limb were higher than those in the contralateral limb (P < .001). CONCLUSION: Patients after PCLR exhibited compensations at the hip and ankle during downward-driven movements, such as stair descent, squats, and stand-to-sit. Conversely, residual long-term side-to-side differences at the knee were detected during upward-driven movements such as stair ascent and sit-to-stand. CLINICAL RELEVANCE: After PCLR, side-to-side differences in biomechanical function were activity-dependent and occurred either at the knee or neighboring joints. When referring to the contralateral limb to assess knee function in the reconstructed limb, concentric, upward-driven movements should be prioritized. Compensations at the hip and ankle during downward-driven movements lead to biases in long-term functional assessments.


Assuntos
Articulação do Tornozelo , Articulação do Quadril , Ligamento Cruzado Posterior , Humanos , Masculino , Adulto , Feminino , Fenômenos Biomecânicos , Ligamento Cruzado Posterior/cirurgia , Ligamento Cruzado Posterior/lesões , Articulação do Quadril/cirurgia , Articulação do Tornozelo/cirurgia , Articulação do Tornozelo/fisiopatologia , Adulto Jovem , Reconstrução do Ligamento Cruzado Posterior , Amplitude de Movimento Articular , Articulação do Joelho/cirurgia , Articulação do Joelho/fisiopatologia , Atividades Cotidianas , Pessoa de Meia-Idade
7.
NPJ Regen Med ; 9(1): 15, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570493

RESUMO

Tissue fibrosis is characterised by the high-energy consumption associated with myofibroblast contraction. Although myofibroblast contraction relies on ATP production, the role of cellular metabolism in myofibroblast contraction has not yet been elucidated. Studies have so far only focused on myofibroblast contraction regulators, such as integrin receptors, TGF-ß and their shared transcription factor YAP/TAZ, in a fibroblast-myofibroblast transition setting. Additionally, the influence of the regulators on metabolism and vice versa have been described in this context. However, this has so far not yet been connected to myofibroblast contraction. This review focuses on the known and unknown of how cellular metabolism influences the processes leading to myofibroblast contraction and vice versa. We elucidate the signalling cascades responsible for myofibroblast contraction by looking at FMT regulators, mechanical cues, biochemical signalling, ECM properties and how they can influence and be influenced by cellular metabolism. By reviewing the existing knowledge on the link between cellular metabolism and the regulation of myofibroblast contraction, we aim to pinpoint gaps of knowledge and eventually help identify potential research targets to identify strategies that would allow switching tissue fibrosis towards tissue regeneration.

8.
J Vis Exp ; (206)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682939

RESUMO

The axolotl (Ambystoma mexicanum) is a promising model organism for regenerative medicine due to its remarkable ability to regenerate lost or damaged organs, including limbs, brain, heart, tail, and others. Studies on axolotl shed light on cellular and molecular pathways ruling progenitor activation and tissue restoration after injury. This knowledge can be applied to facilitate the healing of regeneration-incompetent injuries, such as bone non-union. In the current protocol, the femur osteotomy stabilization using an internal plate fixation system is described. The procedure was adapted for use in aquatic animals (axolotl, Ambystoma mexicanum). ≥20 cm snout-to-tail tip axolotls with fully ossified, mouse-size comparable femurs were used, and special attention was paid to the plate positioning and fixation, as well as to the postoperative care. This surgical technique allows for standardized and stabilized bone fixation and could be useful for direct comparison to axolotl limb regeneration and analogous studies of bone healing across amphibians and mammals.


Assuntos
Ambystoma mexicanum , Placas Ósseas , Fêmur , Osteotomia , Animais , Ambystoma mexicanum/cirurgia , Osteotomia/métodos , Fêmur/cirurgia
9.
Sci Transl Med ; 16(743): eadk9129, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630849

RESUMO

Traumatic brain injury (TBI) leads to skeletal changes, including bone loss in the unfractured skeleton, and paradoxically accelerates healing of bone fractures; however, the mechanisms remain unclear. TBI is associated with a hyperadrenergic state characterized by increased norepinephrine release. Here, we identified the ß2-adrenergic receptor (ADRB2) as a mediator of skeletal changes in response to increased norepinephrine. In a murine model of femoral osteotomy combined with cortical impact brain injury, TBI was associated with ADRB2-dependent enhanced fracture healing compared with osteotomy alone. In the unfractured 12-week-old mouse skeleton, ADRB2 was required for TBI-induced decrease in bone formation and increased bone resorption. Adult 30-week-old mice had higher bone concentrations of norepinephrine, and ADRB2 expression was associated with decreased bone volume in the unfractured skeleton and better fracture healing in the injured skeleton. Norepinephrine stimulated expression of vascular endothelial growth factor A and calcitonin gene-related peptide-α (αCGRP) in periosteal cells through ADRB2, promoting formation of osteogenic type-H vessels in the fracture callus. Both ADRB2 and αCGRP were required for the beneficial effect of TBI on bone repair. Adult mice deficient in ADRB2 without TBI developed fracture nonunion despite high bone formation in uninjured bone. Blocking ADRB2 with propranolol impaired fracture healing in mice, whereas the ADRB2 agonist formoterol promoted fracture healing by regulating callus neovascularization. A retrospective cohort analysis of 72 patients with long bone fractures indicated improved callus formation in 36 patients treated with intravenous norepinephrine. These findings suggest that ADRB2 is a potential therapeutic target for promoting bone healing.


Assuntos
Lesões Encefálicas Traumáticas , Fraturas Ósseas , Humanos , Animais , Camundongos , Consolidação da Fratura/fisiologia , Fator A de Crescimento do Endotélio Vascular , Adrenérgicos , Estudos Retrospectivos , Lesões Encefálicas Traumáticas/metabolismo , Neovascularização Patológica , Norepinefrina
10.
Front Bioeng Biotechnol ; 12: 1322136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352697

RESUMO

Purpose: Passive tibiofemoral anterior-posterior (AP) laxity has been extensively investigated after posterior cruciate ligament (PCL) single-bundle reconstruction. However, the PCL also plays an important role in providing rotational stability in the knee. Little is known in relation to the effects of PCL single-bundle reconstruction on passive tibiofemoral rotational laxity. Gait biomechanics after PCL reconstruction are even less understood. The aim of this study was a comprehensive prospective biomechanical in vivo analysis of the effect of PCL single-bundle reconstruction on passive tibiofemoral rotational laxity, passive anterior-posterior laxity, and gait pattern. Methods: Eight patients undergoing PCL single-bundle reconstruction (seven male, one female, mean age 35.6 ± 6.6 years, BMI 28.0 ± 3.6 kg/m2) were analyzed preoperatively and 6 months postoperatively. Three of the eight patients received additional posterolateral corner (PLC) reconstruction. Conventional stress radiography was used to evaluate passive translational tibiofemoral laxity. A previously established rotometer device with a C-arm fluoroscope was used to assess passive tibiofemoral rotational laxity. Functional gait analysis was used to examine knee kinematics during level walking. Results: The mean side-to-side difference (SSD) in passive posterior translation was significantly reduced postoperatively (12.1 ± 4.4 mm vs. 4.3 ± 1.8 mm; p < 0.01). A significant reduction in passive tibiofemoral rotational laxity at 90° knee flexion was observed postoperatively (27.8° ± 7.0° vs. 19.9° ± 7.5°; p = 0.02). The range of AP tibiofemoral motion during level walking was significantly reduced in the reconstructed knees when compared to the contralateral knees at 6-month follow-up (16.6 ± 2.4 mm vs. 13.5 ± 1.6 mm; p < 0.01). Conclusion: PCL single-bundle reconstruction with optional PLC reconstruction reduces increased passive tibiofemoral translational and rotational laxity in PCL insufficient knees. However, increased passive tibiofemoral translational laxity could not be fully restored and patients showed altered knee kinematics with a significantly reduced range of tibiofemoral AP translation during level walking at 6-month follow-up. The findings of this study indicate a remaining lack of restoration of biomechanics after PCL single-bundle reconstruction in the active and passive state, which could be a possible cause for joint degeneration after PCL single-bundle reconstruction.

11.
Sci Adv ; 10(8): eadj0975, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38381833

RESUMO

Breast cancer often metastasizes to bone, causing osteolytic lesions. Structural and biophysical changes are rarely studied yet are hypothesized to influence metastasis. We developed a mouse model of early bone metastasis and multimodal imaging to quantify cancer cell homing, bone (re)modeling, and onset of metastasis. Using tissue clearing and three-dimensional (3D) light sheet fluorescence microscopy, we located enhanced green fluorescent protein-positive cancer cells and small clusters in intact bones and quantified their size and spatial distribution. We detected early bone lesions using in vivo microcomputed tomography (microCT)-based time-lapse morphometry and revealed altered bone (re)modeling in the absence of detectable lesions. With a new microCT image analysis tool, we tracked the growth of early lesions over time. We showed that cancer cells home in all bone compartments, while osteolytic lesions are only detected in the metaphysis, a region of high (re)modeling. Our study suggests that higher rates of (re)modeling act as a driver of lesion formation during early metastasis.


Assuntos
Neoplasias Ósseas , Osteólise , Animais , Camundongos , Microtomografia por Raio-X/métodos , Neoplasias Ósseas/complicações , Neoplasias Ósseas/secundário , Osso e Ossos/diagnóstico por imagem , Osteólise/diagnóstico por imagem , Osteólise/etiologia , Osteólise/patologia , Modelos Animais de Doenças , Linhagem Celular Tumoral
12.
J Biomech ; 163: 111963, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38286711

RESUMO

It is generally accepted that the lifting technique strongly influences physical loads within the human body and, thus, the risk of musculoskeletal disorders. However, there is a lack of knowledge regarding whether particular lifting techniques are effective in reducing loads. Hence, this retrospective study quantified (partly published) in vivo loads at joints within the human body during two typical lifting techniques, stoop lifting and squat lifting. Patients who had received instrumented implants underwent in vivo load measurements at either the knee (two patients), the hip (eight patients), or the upper lumbar spine (four patients) while lifting a 10 kg weight frontally with either straight (stoop) or bent (squat) knees. Contact forces and moments and the orientation of the contact force vector were determined and examined using the paired t test of Statistical Parametric Mapping. The two lifting techniques did not differ in terms of load magnitudes but did differ in terms of directions: (i) at the hip joint, the load vector varied significantly (p < 0.05) in the frontal and sagittal planes, (ii) at the knee joint, the load vector differed significantly (p < 0.05) in the sagittal plane (iii) while the load vector and magnitude did not differ at the upper lumbar spine (p > 0.05). Our findings indicate that the lifting technique causes changes in the orientation rather than the magnitude of lower extremity joint contact loads. Even though this quantification could only be performed in a small group of patients, the quantification of the relevance of such lifting technique recommendations will hopefully guide future recommendations towards a more scientific interpretation.


Assuntos
Remoção , Coluna Vertebral , Humanos , Estudos Retrospectivos , Joelho , Articulação do Joelho , Vértebras Lombares , Fenômenos Biomecânicos
13.
Adv Sci (Weinh) ; 11(13): e2307050, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38273642

RESUMO

Bone fracture healing is regulated by mechanobiological cues. Both, extracellular matrix (ECM) deposition and microvascular assembly determine the dynamics of the regenerative processes. Mechanical instability as by inter-fragmentary shear or compression is known to influence early ECM formation and wound healing. However, it remains unclear how these external cues shape subsequent ECM and microvascular network assembly. As transcriptional coactivators, the mechanotransducers yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) translate physical cues into downstream signaling events, yet their role in sprouting angiogenesis into the hematoma after injury is unknown. Using bone healing as model system for scar-free regeneration, the role of endothelial YAP/TAZ in combination with tuning the extrinsic mechanical stability via fracture fixation is investigated. Extrinsically imposed shear across the gap delayed hematoma remodeling and shaped the morphology of early collagen fiber orientations and microvascular networks, suggesting that enhanced shear increased the nutrient exchange in the hematoma. In contrast, endothelial YAP/TAZ deletion has little impact on the overall vascularization of the fracture gap, yet slightly increases the collagen fiber deposition under semi-rigid fixation. Together, these data provide novel insights into the respective roles of endothelial YAP/TAZ and extrinsic mechanical cues in orchestrating the process of bone regeneration.


Assuntos
Hematoma , Mecanotransdução Celular , Colágeno/metabolismo , Mecanotransdução Celular/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Consolidação da Fratura/fisiologia , Humanos , Hematoma/metabolismo , Hematoma/patologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia
14.
Comput Biol Med ; 168: 107817, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064852

RESUMO

Titanium patient-specific (CAD/CAM) plates are frequently used in mandibular reconstruction. However, titanium is a very stiff, non-degradable material which also induces artifacts in the imaging. Although magnesium has been proposed as a potential material alternative, the biomechanical conditions in the reconstructed mandible under magnesium CAD/CAM plate fixation are unknown. This study aimed to evaluate the primary fixation stability and potential of magnesium CAD/CAM miniplates. The biomechanical environment in a one segmental mandibular reconstruction with fibula free flap induced by a combination of a short posterior titanium CAD/CAM reconstruction plate and two anterior CAD/CAM miniplates of titanium and/or magnesium was evaluated, using computer modeling approaches. Output parameters were the strains in the healing regions and the stresses in the plates. Mechanical strains increased locally under magnesium fixation. Two plate-protective constellations for magnesium plates were identified: (1) pairing one magnesium miniplate with a parallel titanium miniplate and (2) pairing anterior magnesium miniplates with a posterior titanium reconstruction plate. Due to their degradability and reduced stiffness in comparison to titanium, magnesium plates could be beneficial for bone healing. Magnesium miniplates can be paired with titanium plates to ensure a non-occurrence of plate failure.


Assuntos
Retalhos de Tecido Biológico , Reconstrução Mandibular , Humanos , Retalhos de Tecido Biológico/cirurgia , Reconstrução Mandibular/métodos , Magnésio , Titânio , Mandíbula/diagnóstico por imagem , Mandíbula/cirurgia , Placas Ósseas
15.
Br J Oral Maxillofac Surg ; 62(1): 45-50, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008679

RESUMO

Impaired bony healing following bilateral sagittal split osteotomy (BSSO) is a major unmet medical need for affected patients, and rare occurrences can hinder the identification of underlying risk factors. We hypothesised that osseous union following BSSO can be quantified using volumetric analysis, and we aimed to identify the risk factors for impaired bone healing. The percentage change in bony volume was measured in orthognathic patients following BSSO using two consecutive postoperative cone-beam computed tomography scans. Patients' characteristics and treatment parameters were documented, and correlation and regression analyses of these variables performed. Thirty-six patients (23 men and 13 women) with a mean (SD) age of 33.28 (11.86) years were included. The gap site (lingual versus buccal) (p < 0.01) had a significant impact on the change in volume. Age (p = 0.06) showed a trend towards significance. Initial width of the osteotomy gap, sex, and indication for surgery did not influence osseous healing. Increased age at surgery and the side of the buccal osteotomy are independent risk factors for impaired osseous healing following BSSO.


Assuntos
Mandíbula , Cirurgia Ortognática , Masculino , Humanos , Feminino , Adulto , Mandíbula/diagnóstico por imagem , Mandíbula/cirurgia , Osteotomia Sagital do Ramo Mandibular/efeitos adversos , Osteotomia Sagital do Ramo Mandibular/métodos , Estudos Retrospectivos , Tomografia Computadorizada de Feixe Cônico/métodos
16.
Gait Posture ; 107: 169-176, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37845132

RESUMO

BACKGROUND: Functional recovery after intramedullary nailing of distal tibial fractures can be monitored using ipsilateral vertical ground reaction forces (vGRF), giving insight into recovery of patients' gait symmetry. Previous work compared patient cohorts to healthy controls, but it remains unclear if these metrics can identify treatment-based differences in return to function post-surgery. RESEARCH QUESTION: Is treatment of a distal tibial fracture with intramedullary nailing with an angle stable locking system (ASLS) associated with higher ipsilateral vGRF and improved symmetry compared to conventional intramedullary nailing at an early time point? METHODS: Thirty-nine patients treated with ASLS intramedullary nailing were retrospectively compared to thirty-nine patients with conventional locking. vGRFs were collected at 1, 6, 12, 26, and 52 weeks post-surgery during standing and gait. Discrete metrics of ipsilateral vGRF (maximal force, impulse) and asymmetry were compared between treatments at each time point. Time-scale comparisons of ipsilateral vGRF and lower limb asymmetry were additionally performed for gait trials. Mann-Whitney Test or a two-way analysis of variance tested discrete comparisons; statistical non-parametric mapping tested time-scale data between treatment groups. RESULTS: During gait, ASLS-treated patients applied more load on the operated limb (17-38% stance, p = 0.015) and consequently loaded limbs more symmetrically (8-37% stance, p = 0.008) during the loading response at 6 weeks post-surgery compared to conventional IM treatment. Discrete measures of symmetry at the same time point identified treatment-based differences in maximal force (p = 0.039) and impulse (p = 0.012), with ASLS-treated patients exhibiting more symmetry. No differences were identified in gait trials at later time points nor from all standing trials. SIGNIFICANCE: During the initial loading response of gait, increased ipsilateral vGRF and improved weightbearing symmetry were identified in ASLS patients at 6 weeks post-surgery compared to conventional IM nailing. Early and objective metrics of dynamic movement are suggested to identify treatment-based differences in functional recovery.


Assuntos
Pinos Ortopédicos , Fraturas da Tíbia , Humanos , Estudos Retrospectivos , Placas Ósseas , Fraturas da Tíbia/cirurgia , Suporte de Carga , Resultado do Tratamento
17.
J Bone Joint Surg Am ; 105(24): 1962-1971, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38079507

RESUMO

BACKGROUND: Swimming is commonly recommended as postoperative rehabilitation following total hip arthroplasty (THA) and total knee arthroplasty (TKA). So far, in vivo hip and knee joint loads during swimming remain undescribed. METHODS: In vivo hip and knee joint loads were measured in 6 patients who underwent THA and 5 patients who underwent TKA with instrumented joint implants. Joint loads, including the resultant joint contact force (F Res ), torsional moment around the femoral shaft axis or the tibial axis (M Tors ), bending moment at the middle of the femoral neck (M Bend ), torsional moment around the femoral neck axis (M Tne ), and medial force ratio (MFR) in the knee, were measured during breaststroke swimming at 0.5, 0.6, and 0.7 m/s and the breaststroke and crawl kicks at 0.5 and 1.0 m/s. RESULTS: The ranges of the median maximal F Res were 157% to 193% of body weight for the hip and 93% to 145% of body weight for the knee during breaststroke swimming. Greater maxima of F Res (hip and knee), M Tors (hip and knee), M Bend (hip), and M Tne (hip) were observed with higher breaststroke swimming velocities, but significance was only identified between 0.5 and 0.6 m/s in F Res (p = 0.028), M Tors (p = 0.028), and M Bend (p = 0.028) and between 0.5 and 0.7 m/s in F Res (p = 0.045) in hips. No difference was found in maximal MFR between different breaststroke swimming velocities. The maximal F Res was significantly positively correlated with the breaststroke swimming velocity (hip: r = 0.541; p < 0.05; and knee: r = 0.414; p < 0.001). The maximal F Res (hip and knee) and moments (hip) were higher in the crawl kick than in the breaststroke kick, and a significant difference was recognized in F Res Max for the hip: median, 179% versus 118% of body weight (p = 0.028) for 0.5 m/s and 166% versus 133% of body weight (p = 0.028) for 1.0 m/s. CONCLUSIONS: Swimming is a safe and low-impact activity, particularly recommended for patients who undergo THA or TKA. Hip and knee joint loads are greater with higher swimming velocities and can be influenced by swimming styles. Nevertheless, concrete suggestions to patients who undergo arthroplasty on swimming should involve individual considerations. LEVEL OF EVIDENCE: Therapeutic Level IV . See Instructions for Authors for a complete description of levels of evidence.


Assuntos
Artroplastia de Quadril , Artroplastia do Joelho , Humanos , Natação , Articulação do Joelho/cirurgia , Quadril/cirurgia , Peso Corporal
18.
Front Cardiovasc Med ; 10: 1117419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38054090

RESUMO

Background: Age and sex are prominent risk factors for heart failure and determinants of structural and functional changes of the heart. Cardiac fibroblasts (cFB) are beyond their task as extracellular matrix-producing cells further recognized as inflammation-supporting cells. The present study aimed to evaluate the impact of sex and age on the inflammatory potential of cFB and its impact on the cardiosplenic axis and cardiac fibrosis. Materials: Left ventricles (LV) of 3- and 12-months old male and female C57BL/6J mice were harvested for immunohistochemistry, immunofluorescence and cFB outgrowth culture and the spleen for flow cytometry. LV-derived cFB and respective supernatants were characterized. Results: LV-derived cFB from 3-months old male mice exhibited a higher inflammatory capacity, as indicated by a higher gene expression of CC-chemokine ligand (CCL) 2, and CCL7 compared to cFB derived from 3-months old female mice. The resulting higher CCL2/chemokine C-X3-C motif ligand (Cx3CL1) and CCL7/Cx3CL1 protein ratio in cell culture supernatants of 3-months old male vs. female cFB was reflected by a higher migration of Ly6Chigh monocytes towards supernatant from 3-months old male vs. female cFB. In vivo a lower ratio of splenic pro-inflammatory Ly6Chigh to anti-inflammatory Ly6Clow monocytes was found in 3-months old male vs. female mice, suggesting a higher attraction of Ly6Chigh compared to Ly6Clow monocytes towards the heart in male vs. female mice. In agreement, the percentage of pro-inflammatory CD68+ CD206- macrophages was higher in the LV of male vs. female mice at this age, whereas the percentage of anti-inflammatory CD68+ CD206+ macrophages was higher in the LV of 3-months old female mice compared to age-matched male animals. In parallel, the percentage of splenic TGF-ß+ cells was higher in both 3- and 12-months old female vs. male mice, as further reflected by the higher pro-fibrotic potential of female vs. male splenocytes at both ages. In addition, female mice displayed a higher total LV collagen content compared to age-matched male mice, whereby collagen content of female cFB was higher compared to male cFB at the age of 12-months. Conclusion: Age- and sex-dependent differences in cardiac fibrosis and inflammation are related to age- and sex-dependent variations in the inflammatory properties of cardiac fibroblasts.

19.
Arthritis Res Ther ; 25(1): 244, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102666

RESUMO

BACKGROUND: The vasoactive neuropeptide calcitonin gene-related peptide alpha (αCGRP) enhances nociception in primary knee osteoarthritis (OA) and has been shown to disrupt cartilage and joint integrity in experimental rheumatoid arthritis (RA). Little is known about how αCGRP may alter articular structures in primary OA. We investigated whether αCGRP modulates local inflammation and concomitant cartilage and bone changes in a murine model of age-dependent OA. METHODS: Sixteen- to 18-month-old αCGRP-deficient mice (αCGRP-/-aged) were compared to, first, age-matched wild type (WTaged) and, second, young 4- to 5-month-old non-OA αCGRP-deficient (αCGRP-/-CTRL) and non-OA WT animals (WTCTRL). αCGRP levels were measured in serum. Knee and hip joint inflammation, cartilage degradation, and bone alterations were assessed by histology (OARSI histopathological grading score), gene expression analysis, and µ-computed tomography. RESULTS: WTaged mice exhibited elevated αCGRP serum levels compared to young WTCTRL animals. Marked signs of OA-induced cartilage destruction were seen in WTaged animals, while αCGRP-/-aged mice were mostly protected from this effect. Age-dependent OA was accompanied by an increased gene expression of pro-inflammatory Tnfa, Il1b, and Il6 and catabolic Mmp13, Adamts5, Ctsk, Tnfs11 (Rankl), and Cxcl12/Cxcr4 in WTaged but not in αCGRP-/-aged mice. αCGRP-deficiency however further aggravated subchondral bone sclerosis of the medial tibial plateau and accelerated bone loss in the epi- and metaphyseal trabecular tibial bone in age-dependent OA. CONCLUSIONS: Similar to its function in experimental RA, αCGRP exerts a dual pro-inflammatory and bone-protective function in murine primary OA. Although anti-CGRP treatment was previously not successful in reducing pain in OA clinically, these data underline a crucial pathophysiological role of αCGRP in age-related OA.


Assuntos
Artrite Experimental , Cartilagem Articular , Osteoartrite do Joelho , Camundongos , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Osso e Ossos/metabolismo , Osteoartrite do Joelho/metabolismo , Cartilagem/metabolismo , Artrite Experimental/metabolismo , Inflamação/patologia , Cartilagem Articular/patologia , Modelos Animais de Doenças
20.
Wound Repair Regen ; 31(6): 752-763, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37955528

RESUMO

Uterine rupture during a trial of labor after caesarean delivery (CD) is a serious complication for mother and fetus. The lack of knowledge on histological features and molecular pathways of uterine wound healing has hindered research in this area from evolving over time. We analysed collagen content and turnover in uterine scars on a histological, molecular and ultrastructural level. Therefore, tissue samples from the lower uterine segment were obtained during CD from 16 pregnant women with at least one previous CD, from 16 pregnant women without previous CD, and from 16 non-pregnant premenopausal women after hysterectomy for a benign disease. Histomorphometrical collagen quantification showed, that the collagen content of the scar area in uterine wall specimens after previous CD was significantly higher than in the unscarred myometrium of the same women and the control groups. Quantitative real-time PCR of uterine scar tissue from FFPE samples delineated by laser microdissection yielded a significantly higher COL3A1 expression and a significantly lower COL1A2/COL3A1 ratio in scarred uteri than in samples from unscarred uteri. Histological collagen content and the expression of COL1A2 and COL3A1 were positively correlated, while COL1A2/COL3A1 ratio was negatively correlated with the histological collagen content. Transmission electron microscopy revealed a destroyed myometrial ultrastructure in uterine scars with increased collagen density. We conclude that the high collagen content in uterine scars results from an ongoing overexpression of collagen I and III. This is a proof of concept to enable further analyses of specific factors that mediate uterine wound healing.


Assuntos
Cicatriz , Cicatrização , Feminino , Gravidez , Humanos , Cicatriz/patologia , Útero/patologia , Cesárea/efeitos adversos , Cesárea/métodos , Colágeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...