Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 6(12): 1924-1933, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38107255

RESUMO

High-grade serous ovarian cancer (HGSOC) is the deadliest gynecologic malignancy in women. The low survival rate is largely due to drug resistance. Approximately 80% of patients who initially respond to treatment relapse and become drug-resistant. The lack of effective second-line therapeutics remains a substantial challenge for BRCA-1/2 wild-type HGSOC patients. Histone Deacetylases (HDACs) are promising targets in HGSOC treatment; however, the mechanism and efficacy of HDAC inhibitors are understudied in HGSOC. In order to consider HDACs as a treatment target, an improved understanding of their function within HGSOC is required. This includes elucidating HDAC6-specific protein-protein interactions. In this study, we carried out substrate trapping followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to elucidate HDAC6 catalytic domain (CD)-specific interactors in the context of BRCA-1/2 wild-type HGSOC. Overall, this study identified new HDAC6 substrates that may be unique to HGSOC. The HDAC6-CD1 mutant condition contained the largest number of significant proteins compared to the CD2 mutant and the CD1/2 mutant conditions, suggesting the HDAC6-CD1 domain has catalytic activity that is independent of CD2. Among the identified substrates were proteins involved in DNA damage repair including PARP proteins. These findings further justify the use of HDAC inhibitors as a combination treatment with platinum chemotherapy agents and PARP inhibitors in HGSOC.

2.
Methods Mol Biol ; 2603: 219-234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36370283

RESUMO

Antibody-based affinity purification is a recognized method for use in studying protein-protein interactions. There are four different classes of proteins that are typically identified with such affinity purification workflows: bait protein, proteins that specifically interact with the bait protein, proteins nonspecifically associated with the antibody, and proteins that cross-react with the antibody. Mass spectrometry can be used to differentiate these classes of proteins in affinity-purified mixtures. Here we describe the use of stable isotope labeling by amino acids in cell culture, substrate trapping, and mass spectrometry to enable the objective identification of the components of affinity-purified protein complexes.


Assuntos
Aminoácidos , Proteômica , Marcação por Isótopo/métodos , Proteômica/métodos , Aminoácidos/química , Espectrometria de Massas/métodos , Proteínas/química , Técnicas de Cultura de Células
3.
Proteomics ; 23(3-4): e2100372, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36193784

RESUMO

High-grade serous ovarian cancer (HGSOC) is the most lethal gynecologic malignancy in women. Its low survival rate is attributed to late detection, relapse, and drug resistance. The lack of effective second-line therapeutics remains a significant challenge. There is an opportunity to incorporate the use of histone deacetylase inhibitors (HDACi) into HGSOC treatment. However, the mechanism and efficacy of HDACi in the context of BRCA-1/2 mutation status is understudied. Therefore, we set out to elucidate how HDACi perturb the proteomic landscape within HGSOC cells. In this work, we used TMT labeling followed by data-dependent acquisition LC-MS/MS to quantitatively determine differences in the global proteomic landscape across HDACi-treated CAOV3, OVCAR3, and COV318 (BRCA-1/2 wildtype) HGSOC cells. We identified significant differences in the HDACi-induced perturbations of global protein regulation across CAOV3, OVCAR3, and COV318 cells. The HDACi Vorinostat and Romidepsin were identified as being the least and most effective in inhibiting HDAC activity across the three cell lines, respectively. Our results provide a justification for the further investigation of the functional mechanisms associated with the differential efficacy of FDA-approved HDACi within the context of HGSOC. This will enhance the efficacy of targeted HGSOC therapeutic treatment modalities that include HDACi.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias Ovarianas , Feminino , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Proteoma , Apoptose , Cromatografia Líquida , Proteômica , Linhagem Celular Tumoral , Neoplasias Ovarianas/genética , Espectrometria de Massas em Tandem
4.
mSphere ; 7(6): e0045122, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36374108

RESUMO

APOBEC3B is an innate immune effector enzyme capable of introducing mutations in viral genomes through DNA cytosine-to-uracil editing. Recent studies have shown that gamma-herpesviruses, such as Epstein-Barr virus (EBV), have evolved a potent APOBEC3B neutralization mechanism to protect lytic viral DNA replication intermediates in the nuclear compartment. APOBEC3B is additionally unique as the only human DNA deaminase family member that is constitutively nuclear. Nuclear localization has therefore been inferred to be essential for innate antiviral function. Here, we combine evolutionary, molecular, and cell biology approaches to address whether nuclear localization is a conserved feature of APOBEC3B in primates. Despite the relatively recent emergence of APOBEC3B approximately 30 to 40 million years ago (MYA) in Old World primates by genetic recombination (after the split from the New World monkey lineage 40 to 50 MYA), we find that the hallmark nuclear localization of APOBEC3B shows variability. For instance, although human and several nonhuman primate APOBEC3B enzymes are predominantly nuclear, rhesus macaque and other Old World primate APOBEC3B proteins are clearly cytoplasmic or cell wide. A series of human/rhesus macaque chimeras and mutants combined to map localization determinants to the N-terminal half of the protein with residues 15, 19, and 24 proving critical. Ancestral APOBEC3B reconstructed from present-day primate species also shows strong nuclear localization. Together, these results indicate that the ancestral nuclear localization of APOBEC3B is maintained in present-day human and ape proteins, but nuclear localization is not conserved in all Old World monkey species despite a need for antiviral functions in the nuclear compartment. IMPORTANCE APOBEC3 enzymes are single-stranded DNA cytosine-to-uracil deaminases with beneficial roles in antiviral immunity and detrimental roles in cancer mutagenesis. Regarding viral infection, all seven human APOBEC3 enzymes have overlapping roles in restricting virus types that require DNA for replication, including EBV, HIV, human papillomavirus (HPV), and human T-cell leukemia virus (HTLV). Regarding cancer, at least two APOBEC3 enzymes, APOBEC3B and APOBEC3A, are prominent sources of mutation capable of influencing clinical outcomes. Here, we combine evolutionary, molecular, and cell biology approaches to characterize primate APOBEC3B enzymes. We show that nuclear localization is an ancestral property of APOBEC3B that is maintained in present-day human and ape enzymes, but not conserved in other nonhuman primates. This partial mechanistic conservation indicates that APOBEC3B is important for limiting the replication of DNA-based viruses in the nuclear compartment. Understanding these pathogen-host interactions may contribute to the development of future antiviral and antitumor therapies.


Assuntos
Infecções por Vírus Epstein-Barr , Hominidae , Neoplasias , Animais , Humanos , Hominidae/genética , Hominidae/metabolismo , Macaca mulatta , Replicação do DNA , Herpesvirus Humano 4/genética , Replicação Viral , DNA Viral/metabolismo , Neoplasias/genética , Neoplasias/patologia , Citosina , Uracila , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...