Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 143: 107076, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163424

RESUMO

Design of tubulin inhibitors as anticancer drugs dynamically developed over the past 20 years. The modern arsenal of potential tubulin-targeting anticancer agents is represented by small molecules, monoclonal antibodies, and antibody-drug conjugates. Moreover, targeting tubulin has been a successful strategy in the development of antiparasitic drugs. In the present review, an overall picture of the research and development of potential tubulin-targeting agents using small molecules between 2018 and 2023 is provided. The data about some most often used and prospective chemotypes of small molecules (privileged heterocycles, moieties of natural molecules) and synthetic methodologies (analogue-based, fragment-based drug design, molecular hybridization) applied for the design of novel agents with an impact on the tubulin system are summarized. The design and prospects of multi-target agents with an impact on the tubulin system were also highlighted. Reported in the review data contribute to the "structure-activity" profile of tubulin-targeting small molecules as anticancer and antiparasitic agents and will be useful for the application by medicinal chemists in further exploration, design, improvement, and optimization of this class of molecules.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Antiparasitários/farmacologia , Estudos Prospectivos , Antineoplásicos/farmacologia , Relação Estrutura-Atividade
2.
Bioorg Chem ; 143: 106982, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995642

RESUMO

Antibody-Drug Conjugates (ADC) are a new class of anticancer therapeutics with immense potential. They have been rapidly advancing in the last two decades. This fast speed of development has become possible due to several new technologies and methods. One of them is Click Chemistry, an approach that was created only two decades ago, but already is actively utilized for bioconjugation, material science and drug discovery. In this review, we researched the impact of Click Chemistry reactions on the synthesis and development of ADCs. The information about the most frequently utilized reactions, such as Michael's addition, Copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC), Strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC), oxime bond formation, hydrazine-iso-Pictet-Spengler Ligation (HIPS), Diels-Alder reactions have been summarized. The implementation of thiol-maleimide Click Chemistry reaction in the synthesis of numerous FDA-approved Antibody-Drug Conjugates has been reported. The data amassed in the present review provides better understanding of the importance of Click Chemistry in the synthesis, development and improvement of the Antibody-Drug Conjugates and it will be helpful for further researches related to ADCs.


Assuntos
Azidas , Química Click , Maleimidas , Compostos de Sulfidrila , Azidas/química , Alcinos/química , Reação de Cicloadição , Cobre/química
3.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361924

RESUMO

Oncological diseases have currently reached an epidemic scale, especially in industrialized countries. Such a situation has prompted complex studies in medicinal chemistry focused on the research and development of novel effective anticancer drugs. In this review, the data concerning new 4-thiazolidinone-bearing hybrid molecules with potential anticancer activity reported during the period from the years 2017-2022 are summarized. The main emphasis is on the application of molecular hybridization methodologies and strategies in the design of small molecules as anticancer agents. Based on the analyzed data, it was observed that the main directions in this field are the hybridization of scaffolds, the hybrid-pharmacophore approach, and the analogue-based drug design of 4-thiazolidinone cores with early approved drugs, natural compounds, and privileged heterocyclic scaffolds. The mentioned design approaches are effective tools/sources for the generation of hit/lead compounds with anticancer activity and will be relevant to future studies.


Assuntos
Antineoplásicos , Desenho de Fármacos , Tiazolidinas/farmacologia , Tiazolidinas/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Química Farmacêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...