Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 26, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38302906

RESUMO

BACKGROUND: The ability of recombinant adeno-associated virus to transduce preimplantation mouse embryos has led to the use of this delivery method for the production of genetically altered knock-in mice via CRISPR-Cas9. The potential exists for this method to simplify the production and extend the types of alleles that can be generated directly in the zygote, obviating the need for manipulations of the mouse genome via the embryonic stem cell route. RESULTS: We present the production data from a total of 13 genetically altered knock-in mouse models generated using CRISPR-Cas9 electroporation of zygotes and delivery of donor repair templates via transduction with recombinant adeno-associated virus. We explore the efficiency of gene targeting at a total of 12 independent genetic loci and explore the effects of allele complexity and introduce strategies for efficient identification of founder animals. In addition, we investigate the reliability of germline transmission of the engineered allele from founder mice generated using this methodology. By comparing our production data against genetically altered knock-in mice generated via gene targeting in embryonic stem cells and their microinjection into blastocysts, we assess the animal cost of the two methods. CONCLUSIONS: Our results confirm that recombinant adeno-associated virus transduction of zygotes provides a robust and effective delivery route for donor templates for the production of knock-in mice, across a range of insertion sizes (0.9-4.7 kb). We find that the animal cost of this method is considerably less than generating knock-in models via embryonic stem cells and thus constitutes a considerable 3Rs reduction.


Assuntos
Sistemas CRISPR-Cas , Dependovirus , Camundongos , Animais , Dependovirus/genética , Reprodutibilidade dos Testes , Zigoto , Marcação de Genes , Técnicas de Introdução de Genes/métodos
2.
bioRxiv ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37609190

RESUMO

To increase antibody affinity against pathogens, positively selected GC-B cells initiate cell division in the light zone (LZ) of germinal centres (GCs). Among those, higher-affinity clones migrate to the dark zone (DZ) and vigorously proliferate by relying on oxidative phosphorylation (OXPHOS). However, it remains unknown how positively selected GC-B cells adapt their metabolism for cell division in the glycolysis-dominant, cell cycle arrest-inducing, hypoxic LZ microenvironment. Here, we show that microRNA (miR)-155 mediates metabolic reprogramming during positive selection to protect high-affinity clones. Transcriptome examination and mass spectrometry analysis revealed that miR-155 regulates H3K36me2 levels by directly repressing hypoxia-induced histone lysine demethylase, Kdm2a. This is indispensable for enhancing OXPHOS through optimizing the expression of vital nuclear mitochondrial genes under hypoxia. The miR-155-Kdm2a interaction is crucial to prevent excessive production of reactive oxygen species and apoptosis. Thus, miR-155-mediated epigenetic regulation promotes mitochondrial fitness in high-affinity clones, ensuring their expansion and consequently affinity maturation.

3.
Nat Commun ; 11(1): 3588, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680985

RESUMO

Tumors subvert immune cell function to evade immune responses, yet the complex mechanisms driving immune evasion remain poorly understood. Here we show that tumors induce de novo steroidogenesis in T lymphocytes to evade anti-tumor immunity. Using a transgenic steroidogenesis-reporter mouse line we identify and characterize de novo steroidogenic immune cells, defining the global gene expression identity of these steroid-producing immune cells and gene regulatory networks by using single-cell transcriptomics. Genetic ablation of T cell steroidogenesis restricts primary tumor growth and metastatic dissemination in mouse models. Steroidogenic T cells dysregulate anti-tumor immunity, and inhibition of the steroidogenesis pathway is sufficient to restore anti-tumor immunity. This study demonstrates T cell de novo steroidogenesis as a mechanism of anti-tumor immunosuppression and a potential druggable target.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Melanoma/imunologia , Esteroides/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Tumoral , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/imunologia , Humanos , Evasão da Resposta Imune , Melanoma/genética , Melanoma/metabolismo , Camundongos , Camundongos Knockout , Esteroides/biossíntese
4.
Cell ; 176(4): 882-896.e18, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30639098

RESUMO

T helper type 2 (Th2) cells are important regulators of mammalian adaptive immunity and have relevance for infection, autoimmunity, and tumor immunology. Using a newly developed, genome-wide retroviral CRISPR knockout (KO) library, combined with RNA-seq, ATAC-seq, and ChIP-seq, we have dissected the regulatory circuitry governing activation and differentiation of these cells. Our experiments distinguish cell activation versus differentiation in a quantitative framework. We demonstrate that these two processes are tightly coupled and are jointly controlled by many transcription factors, metabolic genes, and cytokine/receptor pairs. There are only a small number of genes regulating differentiation without any role in activation. By combining biochemical and genetic data, we provide an atlas for Th2 differentiation, validating known regulators and identifying factors, such as Pparg and Bhlhe40, as part of the core regulatory network governing Th2 helper cell fates.


Assuntos
Receptor Cross-Talk/imunologia , Células Th2/imunologia , Células Th2/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Cromatina , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores/metabolismo , Fatores de Transcrição/metabolismo
5.
Biochem J ; 473(17): 2671-85, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474410

RESUMO

Autosomal dominant mutations that activate the leucine-rich repeat kinase 2 (LRRK2) cause inherited Parkinson's disease. Recent work has revealed that LRRK2 directly phosphorylates a conserved threonine/serine residue in the effector-binding switch-II motif of a number of Rab GTPase proteins, including Rab10. Here we describe a facile and robust method to assess phosphorylation of endogenous Rab10 in mouse embryonic fibroblasts (MEFs), lung and spleen-derived B-cells, based on the ability of the Phos-tag reagent to retard the electrophoretic mobility of LRRK2-phosphorylated Rab10. We exploit this assay to show that phosphorylation of Rab10 is ablated in kinase-inactive LRRK2[D2017A] knockin MEFs and mouse lung, demonstrating that LRRK2 is the major Rab10 kinase in these cells/tissue. We also establish that the Phos-tag assay can be deployed to monitor the impact that activating LRRK2 pathogenic (G2019S and R1441G) knockin mutations have on stimulating Rab10 phosphorylation. We show that upon addition of LRRK2 inhibitors, Rab10 is dephosphorylated within 1-2 min, markedly more rapidly than the Ser(935) and Ser(1292) biomarker sites that require 40-80 min. Furthermore, we find that phosphorylation of Rab10 is suppressed in LRRK2[S910A+S935A] knockin MEFs indicating that phosphorylation of Ser(910) and Ser(935) and potentially 14-3-3 binding play a role in facilitating the phosphorylation of Rab10 by LRRK2 in vivo The Rab Phos-tag assay has the potential to significantly aid with evaluating the effect that inhibitors, mutations and other factors have on the LRRK2 signalling pathway.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Camundongos , Camundongos Knockout , Fosforilação , Proteínas rab de Ligação ao GTP/genética
6.
Elife ; 52016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26824392

RESUMO

Mutations in Park8, encoding for the multidomain Leucine-rich repeat kinase 2 (LRRK2) protein, comprise the predominant genetic cause of Parkinson's disease (PD). G2019S, the most common amino acid substitution activates the kinase two- to threefold. This has motivated the development of LRRK2 kinase inhibitors; however, poor consensus on physiological LRRK2 substrates has hampered clinical development of such therapeutics. We employ a combination of phosphoproteomics, genetics, and pharmacology to unambiguously identify a subset of Rab GTPases as key LRRK2 substrates. LRRK2 directly phosphorylates these both in vivo and in vitro on an evolutionary conserved residue in the switch II domain. Pathogenic LRRK2 variants mapping to different functional domains increase phosphorylation of Rabs and this strongly decreases their affinity to regulatory proteins including Rab GDP dissociation inhibitors (GDIs). Our findings uncover a key class of bona-fide LRRK2 substrates and a novel regulatory mechanism of Rabs that connects them to PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/fisiopatologia , Processamento de Proteína Pós-Traducional , Proteoma/análise , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Camundongos Knockout
7.
PLoS One ; 9(10): e107437, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25329046

RESUMO

Apoptosis signal-regulating kinase-1 (ASK1) is a mitogen-activated protein 3 kinase (MAPKKK/MAP3K) which lies upstream of the stress-activated MAPKs, JNK and p38. ASK1 may be activated by a variety of extracellular and intracellular stimuli. MAP kinase activation in the sensory nervous system as a result of diabetes has been shown in numerous preclinical and clinical studies. As a common upstream activator of both p38 and JNK, we hypothesised that activation of ASK1 contributes to nerve dysfunction in diabetic neuropathy. We therefore wanted to characterize the expression of ASK1 in sensory neurons, and determine whether the absence of functional ASK1 would protect against the development of neuropathy in a mouse model of experimental diabetes. ASK1 mRNA and protein is constitutively expressed by multiple populations of sensory neurons of the adult mouse lumbar DRG. Diabetes was induced in male C57BL/6 and transgenic ASK1 kinase-inactive (ASK1n) mice using streptozotocin. Levels of ASK1 do not change in the DRG, spinal cord, or sciatic nerve following induction of diabetes. However, levels of ASK2 mRNA increase in the spinal cord at 4 weeks of diabetes, which could represent a future target for this field. Neither motor nerve conduction velocity deficits, nor thermal or mechanical hypoalgesia were prevented or ameliorated in diabetic ASK1n mice. These results suggest that activation of ASK1 is not responsible for the nerve deficits observed in this mouse model of diabetic neuropathy.


Assuntos
Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/prevenção & controle , MAP Quinase Quinase Quinase 5/metabolismo , Terapia de Alvo Molecular , Animais , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/enzimologia , Regulação Enzimológica da Expressão Gênica , MAP Quinase Quinase Quinase 5/genética , Masculino , Camundongos , Camundongos Transgênicos , Nervo Isquiático/metabolismo , Medula Espinal/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
PLoS One ; 9(9): e107490, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25250764

RESUMO

Interleukin-2 inducible tyrosine kinase (ITK) is expressed in T cells and plays a critical role in signalling through the T cell receptor. Evidence, mainly from knockout mice, has suggested that ITK plays a particularly important function in Th2 cells and this has prompted significant efforts to discover ITK inhibitors for the treatment of allergic disease. However, ITK is known to have functions outside of its kinase domain and in general kinase knockouts are often not good models for the behaviour of small molecule inhibitors. Consequently we have developed a transgenic mouse where the wild type Itk allele has been replaced by a kinase dead Itk allele containing an inactivating K390R point mutation (Itk-KD mice). We have characterised the immune phenotype of these naive mice and their responses to airway inflammation. Unlike Itk knockout (Itk-/-) mice, T-cells from Itk-KD mice can polymerise actin in response to CD3 activation. The lymph nodes from Itk-KD mice showed more prominent germinal centres than wild type mice and serum antibody levels were significantly abnormal. Unlike the Itk-/-, γδ T cells in the spleens of the Itk-KD mice had an impaired ability to secrete Th2 cytokines in response to anti-CD3 stimulation whilst the expression of ICOS was not significantly different to wild type. However ICOS expression is markedly increased on αßCD3+ cells from the spleens of naïve Itk-KD compared to WT mice. The Itk-KD mice were largely protected from inflammatory symptoms in an Ovalbumin model of airway inflammation. Consequently, our studies have revealed many similarities but some differences between Itk-/-and Itk-KD transgenic mice. The abnormal antibody response and enhanced ICOS expression on CD3+ cells has implications for the consideration of ITK as a therapeutic target.


Assuntos
Substituição de Aminoácidos , Pneumonia/genética , Mutação Puntual , Proteínas Tirosina Quinases/genética , Animais , Western Blotting , Complexo CD3/imunologia , Complexo CD3/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Inibidores Enzimáticos/imunologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Citometria de Fluxo , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Contagem de Linfócitos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Ovalbumina/imunologia , Pneumonia/tratamento farmacológico , Pneumonia/imunologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Baço/imunologia , Baço/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
9.
BMC Cell Biol ; 10: 54, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-19607714

RESUMO

BACKGROUND: The phosphoinositide (PIns) signalling pathway regulates a series of neuronal processes, such as neurotransmitter release, that are thought to be altered in mood disorders. Furthermore, mood-stabilising drugs have been shown to inhibit key enzymes that regulate PIns production and alter neuronal growth cone morphology in an inositol-reversible manner. Here, we describe analyses of expression and function of the recently identified H+/myo-inositol transporter (HMIT) investigated as a potential regulator of PIns signalling. RESULTS: We show that HMIT is primarily a neuronal transporter widely expressed in the rat and human brain, with particularly high levels in the hippocampus and cortex, as shown by immunohistochemistry. The transporter is localised at the Golgi apparatus in primary cultured neurones. No HMIT-mediated electrophysiological responses were detected in rat brain neurones or slices; in addition, inositol transport and homeostasis were unaffected in HMIT targeted null-mutant mice. CONCLUSION: Together, these data do not support a role for HMIT as a neuronal plasma membrane inositol transporter, as previously proposed. However, we observed that HMIT can transport inositol triphosphate, indicating unanticipated intracellular functions for this transporter that may be relevant to mood control.


Assuntos
Encéfalo/citologia , Proteínas Facilitadoras de Transporte de Glucose/análise , Proteínas Facilitadoras de Transporte de Glucose/genética , Inositol/metabolismo , Neurônios/citologia , Animais , Linhagem Celular , Células Cultivadas , Córtex Cerebral/citologia , Deleção de Genes , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mutação , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
10.
Mol Cell Neurosci ; 24(3): 646-55, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14664815

RESUMO

BACE1 is a key enzyme in the generation of Abeta, the major component of senile plaques in the brains of Alzheimer's disease patients. We have generated transgenic mice expressing human BACE1 with the Cam Kinase II promoter driving neuronal-specific expression. The transgene contains the full-length coding sequence of human BACE1 preceding an internal ribosome entry site element followed by a LacZ reporter gene. These animals exhibit a bold, exploratory behavior and show elevated 5-hydroxytryptamine turnover. We have also generated a knockout mouse in which LacZ replaces the first exon of murine BACE1. Interestingly these animals show a contrasting behavior, being timid and less exploratory. Despite these clear differences both mouse lines are viable and fertile with no changes in morbidity. These results suggest an unexpected role for BACE1 in neurotransmission, perhaps through changes in amyloid precursor protein processing and Abeta levels.


Assuntos
Ácido Aspártico Endopeptidases/deficiência , Comportamento Animal/fisiologia , Encéfalo/enzimologia , Serotonina/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides/biossíntese , Animais , Ácido Aspártico Endopeptidases/genética , Encéfalo/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Endopeptidases , Comportamento Exploratório/fisiologia , Medo/fisiologia , Genes Reporter/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fenótipo , Transmissão Sináptica/genética , Transgenes/genética
11.
Br J Pharmacol ; 136(1): 9-22, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11976263

RESUMO

Urotensin-II (U-II) and its receptor (UT) represent novel therapeutic targets for management of a variety of cardiovascular diseases. To test such hypothesis, it will be necessary to develop experimental animal models for the manipulation of U-II/UT receptor system. The goal of this study was to clone mouse and primate preproU-II and UT for pharmacological profiling. Monkey and mouse preproU-II genes were identified to encode 123 and 125 amino acids. Monkey and mouse UT receptors were 389, and 386 amino acids, respectively. Genomic organization of mouse genes showed that the preproU-II has four exons, while the UT receptor has one exon. Although initially viewed by many exclusively as cardiovascular targets, the present study demonstrates expression of mouse and monkey U-II/UT receptor mRNA in extra-vascular tissue including lung, pancreas, skeletal muscle, kidney and liver. Ligand binding studies showed that [125I]h U-II bound to a single sites to the cloned receptors in a saturable/high affinity manner (Kd 654+/-154 and 214+/-65 pM and Bmax of 1011+/-125 and 497+/-68 fmol mg-1 for mouse and monkey UT receptors, respectively). Competition binding analysis demonstrated equipotent, high affinity binding of numerous mammalian, amphibian and piscine U-II isopeptides to these receptors (Ki=0.8 - 3 nM). Fluorescein isothiocyanate (FITC) labelled U-II, bound specifically to HEK-293 cells expressing mouse or monkey UT receptor, confirming cell surface expression of recombinant UT receptor. Exposure of these cells to human U-II resulted in an increase in intracellular [Ca2+] concentrations (EC50 3.2+/-0.8 and 1.1+/-0.3 nM for mouse and monkey UT receptors, respectively) and inositol phosphate (Ip) formation (EC50 7.2+/-1.8 and 0.9+/-0.2 nM for mouse and monkey UT receptors, respectively) consistent with the primary signalling pathway for UT receptor involving phospholipase C activation.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G , Urotensinas/genética , Urotensinas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Ligação Competitiva , Southern Blotting , Linhagem Celular , Clonagem Molecular , Cricetinae , Fluoresceína-5-Isotiocianato , Corantes Fluorescentes , Humanos , Macaca fascicularis , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Especificidade de Órgãos , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Ensaio Radioligante , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...