Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930374

RESUMO

The article discusses the phenomena and destructive mechanisms occurring on the surface of 1.2344 steel dies used during the hot forging of disc-type forgings. Preliminary research has shown that gas nitriding alone, used so far, is insufficient due to the occurrence of destructive mechanisms other than abrasive wear, such as thermal and thermomechanical fatigue, which cause the average durability of such tools to be approximately 5000 forgings. Analyses were also carried out to assess the load on forging tools using numerical modeling (Forge 3.0NxT), which confirmed the occurrence of large and cyclically changing thermal and mechanical loads during the forging process. Therefore, in order to increase operational durability, it was decided to use two types of hybrid layers, differing in the PVD coating used: TiCrAlN and CrN, and then subjected to gas nitriding (GN). The obtained results showed that, depending on the area of the tool and the current working conditions, the applied PVD coatings protect the surface layer of the tool against the dominant destructive mechanisms. In both cases, the strength increased to the level of 7000 forgings, the tools could continue to work, and globally, slightly better results were obtained for the GN+TiCrAlN layer. The CrN-type layer protects the tool more against thermal fatigue, while the TiCrAlN layer is more resistant to abrasive wear. In areas where the hybrid layer was worn, a decrease in hardness was observed from 1300 HV to 600-700 HV, and in places of intense material flow (front-point 2 and tool bridge-point 9) the hardness dropped to below 400 HV, which may indicate local tempering of the material. Moreover, the research has shown that each process and tool should be analyzed individually, and the areas in the tool where particular destructive mechanisms dominate should be identified, so as to further protect the forging tool by using appropriate protective coatings in these areas.

2.
Materials (Basel) ; 17(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473559

RESUMO

The study refers to the application of numerical modeling for the improvement of the currently realized precision forging technology performed on a hammer to produce connecting rod forgings in a triple system through the development of an additional rolling pass to be used before the roughing operation as well as preparation of the charge to be held by the robot's grippers in order to implement future process robotization. The studies included an analysis of the present forging technology together with the dimension-shape requirements for the forgings, which constituted the basis for the construction and development of a thermo-mechanical numerical model as well as the design of the tool construction with the consideration of the additional rolling pass with the use of the calculation package Forge 3.0 NxT. The following stage of research was the realization of multi-variant numerical simulations of the newly developed forging process with the consideration of robotization, as a result of which the following were obtained: proper filling of the tool impressions (including the roller's impression) by the deformed material, the temperature distributions for the forging and the tools as well as plastic deformations (considering the thermally activated phenomena), changes in the grain size as well as the forging force and energy courses. The obtained results were verified under industrial conditions and correlated with respect to the forgings obtained in the technology applied so far. The achieved results of technological tests confirmed that the changes introduced into the tool construction and the preform geometry reduced the diameter, and thus also the volume, of the charge as well as provided a possibility of implementing robotization and automatization of the forging process in the future. The obtained results showed that the introduction of an additional rolling blank resulted in a reduction in forging forces and energy by 30% while reducing the hammer blow by one. Attempts to implement robotization into the process were successful and did not adversely affect the geometry or quality of forgings, increasing production efficiency.

3.
Materials (Basel) ; 17(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38204068

RESUMO

This paper presents research results in the field of industrial die forging, mostly related to the use of advanced measuring techniques and tools, numerical simulations, and other IT tools and methods for a geometrical analysis of the forged items as well as detection of forging flaws and their prevention, and optimization of the hot-forging processes. The results of the conducted investigations were divided into three main areas. The first area refers to the application of, e.g., optical scanners and programs related to their operation, data analysis, including the construction of virtual gauges, measurements of selected geometrical features of both the manufactured forgings and their physical and virtual models, as well as an analysis of the durability of the forging tools based on the proprietary reverse scanning method. The second area presents the results of measurements and analyses performed with the use of finite element modeling and by means of some special functions in the calculation packages, such as contact, flow lines, trap, or fold, for the detection of forging defects and an analysis of the force parameters. In turn, the third area presents a combination of different methods of measurement and analysis, both FEM and scanning, as well as other IT methods (physical modeling, image analysis, etc.) for the analysis of the geometry and defects of the forgings. The presented results point to the great potential of these types of tools and techniques in forging industry applications as they significantly shorten the time and increase the accuracy of the measurement, as well as providing a lot of valuable information, physical variables, and technological parameters that are difficult or impossible to determine either analytically or through experimental means. The use and development of these techniques and methods are fully justified, both in the aspect of science and the increased effectiveness and efficiency of production.

4.
Materials (Basel) ; 14(22)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34832461

RESUMO

The article performs an analysis of the durability of punches applied in the process of producing a valve forging from chromium-nickel steel. A forging of this type is made in two operations: coextrusion of a long shank, followed by finishing forging in closed dies of the valve head. The product obtained in this way (after other additional finishing procedures) constitutes the key element of the combustion engine (resistant to high pressures and temperatures) in motor trucks. Unfortunately, a significant problem in this production process is a relatively low durability of the forging tools, especially the punch used in the second forging operation. The key element at this stage, deciding about the punch's further operation, is the area of the so-called "calotte". The short-term life of the tools results from very hard performance conditions present during the forging process (periodical high mechanical and thermal loads, long path of friction). The latter cause intensive abrasive wear as well as high adhesion of the forging material to the tool surface. Based on the performed studies, including the following: technology analysis, numerical modelling, macro analyses combined with 3D scanning of tool sections as well as microstructural tests and hardness measurements, it was established that it is crucial to properly select the process parameters (charge and tool temperature, tribological conditions), as even slight changes introduced into them significantly affect the operation time of the forging tools. Mastering and proper implementation of the analyzed forging technology requires numerous further studies and tests, which will enable its perfection and thus increase the durability of the tools as well as the quality of the produced items.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...