Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Comput Sci ; 3(5): 443-454, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38177849

RESUMO

We present an additive approach for the inverse design of kirigami-based mechanical metamaterials by focusing on the empty (negative) spaces instead of the solid tiles. By considering each negative space as a four-bar linkage, we identify a simple recursive relationship between adjacent linkages, yielding an efficient method for creating kirigami patterns. This allows us to solve the kirigami design problem using elementary linear algebra, with compatibility, reconfigurability and rigid-deployability encoded into an iterative procedure involving simple matrix multiplications. The resulting linear design strategy circumvents the solution of a non-convex global optimization problem and allows us to control the degrees of freedom in the deployment angle field, linkage offsets and boundary conditions. We demonstrate this by creating a large variety of rigid-deployable, compact, reconfigurable kirigami patterns. We then realize our kirigami designs physically using two simple but effective fabrication strategies with very different materials. Altogether, our additive approaches present routes for efficient mechanical metamaterial design and fabrication based on ori/kirigami art forms.

2.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001605

RESUMO

Inspired by the allure of additive fabrication, we pose the problem of origami design from a different perspective: How can we grow a folded surface in three dimensions from a seed so that it is guaranteed to be isometric to the plane? We solve this problem in two steps: by first identifying the geometric conditions for the compatible completion of two separate folds into a single developable fourfold vertex, and then showing how this foundation allows us to grow a geometrically compatible front at the boundary of a given folded seed. This yields a complete marching, or additive, algorithm for the inverse design of the complete space of developable quad origami patterns that can be folded from flat sheets. We illustrate the flexibility of our approach by growing ordered, disordered, straight, and curved-folded origami and fitting surfaces of given curvature with folded approximants. Overall, our simple shift in perspective from a global search to a local rule has the potential to transform origami-based metastructure design.

3.
Nat Mater ; 18(9): 999-1004, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31435070

RESUMO

Kirigami tessellations, regular planar patterns formed by partially cutting flat, thin sheets, allow compact shapes to morph into open structures with rich geometries and unusual material properties. However, geometric and topological constraints make the design of such structures challenging. Here we pose and solve the inverse problem of determining the number, size and orientation of cuts that enables the deployment of a closed, compact regular kirigami tessellation to conform approximately to any prescribed target shape in two or three dimensions. We first identify the constraints on the lengths and angles of generalized kirigami tessellations that guarantee that their reconfigured face geometries can be contracted from a non-trivial deployed shape to a compact, non-overlapping planar cut pattern. We then encode these conditions into a flexible constrained optimization framework to obtain generalized kirigami patterns derived from various periodic tesselations of the plane that can be deployed into a wide variety of prescribed shapes. A simple mechanical analysis of the resulting structure allows us to determine and control the stability of the deployed state and control the deployment path. Finally, we fabricate physical models that deploy in two and three dimensions to validate this inverse design approach. Altogether, our approach, combining geometry, topology and optimization, highlights the potential for generalized kirigami tessellations as building blocks for shape-morphing mechanical metamaterials.

4.
R Soc Open Sci ; 5(8): 172281, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30224995

RESUMO

The identification of relationships in complex networks is critical in a variety of scientific contexts. This includes the identification of globally central nodes and analysing the importance of pairwise relationships between nodes. In this paper, we consider the concept of topological proximity (or 'closeness') between nodes in a weighted network using the generalized Erdos numbers (GENs). This measure satisfies a number of desirable properties for networks with nodes that share a finite resource. These include: (i) real-valuedness, (ii) non-locality and (iii) asymmetry. We show that they can be used to define a personalized measure of the importance of nodes in a network with a natural interpretation that leads to new methods to measure centrality. We show that the square of the leading eigenvector of an importance matrix defined using the GENs is strongly correlated with well-known measures such as PageRank, and define a personalized measure of centrality that is also well correlated with other existing measures. The utility of this measure of topological proximity is demonstrated by showing the asymmetries in both the dynamics of random walks and the mean infection time in epidemic spreading are better predicted by the topological definition of closeness provided by the GENs than they are by other measures.

5.
Nat Mater ; 15(5): 583-8, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26808459

RESUMO

Origami describes rules for creating folded structures from patterns on a flat sheet, but does not prescribe how patterns can be designed to fit target shapes. Here, starting from the simplest periodic origami pattern that yields one-degree-of-freedom collapsible structures-we show that scale-independent elementary geometric constructions and constrained optimization algorithms can be used to determine spatially modulated patterns that yield approximations to given surfaces of constant or varying curvature. Paper models confirm the feasibility of our calculations. We also assess the difficulty of realizing these geometric structures by quantifying the energetic barrier that separates the metastable flat and folded states. Moreover, we characterize the trade-off between the accuracy to which the pattern conforms to the target surface, and the effort associated with creating finer folds. Our approach enables the tailoring of origami patterns to drape complex surfaces independent of absolute scale, as well as the quantification of the energetic and material cost of doing so.

6.
Phys Rev Lett ; 109(11): 114301, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23005633

RESUMO

Folding a sheet of paper along a curve can lead to structures seen in decorative art and utilitarian packing boxes. Here we present a theory for the simplest such structure: an annular circular strip that is folded along a central circular curve to form a three-dimensional buckled structure driven by geometrical frustration. We quantify this shape in terms of the radius of the circle, the dihedral angle of the fold, and the mechanical properties of the sheet of paper and the fold itself. When the sheet is isometrically deformed everywhere except along the fold itself, stiff folds result in creases with constant curvature and oscillatory torsion. However, relatively softer folds inherit the broken symmetry of the buckled shape with oscillatory curvature and torsion. Our asymptotic analysis of the isometrically deformed state is corroborated by numerical simulations that allow us to generalize our analysis to study structures with multiple curved creases.


Assuntos
Modelos Teóricos , Papel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...