Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(6 Pt 1): 061906, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20365189

RESUMO

Molecular-dynamics simulations of a normal DNA duplex show that breathing events typically occur on the microsecond time scale. This paper analyzes a 12 base pairs DNA duplex containing the "rogue" base difluorotoluene (F) in place of a thymine base (T), for which the breathing events occur on the nanosecond time scale. Starting from a nonlinear Klein-Gordon lattice model and adding noise and damping, we obtain a mesoscopic model of the DNA duplex close to that observed in experiments and all-atom molecular dynamics simulations. The mesoscopic model is calibrated to data from the all-atom molecular dynamics package AMBER for a variety of twist angles of the DNA duplex. Defects are considered in the interchain interactions as well as in the along-chain interactions. This paper also discusses the role of the fluctuation-dissipation relations in the derivation of reduced (mesoscopic) models, the differences between the potential of mean force and the potential energies used in Klein-Gordon lattices, and how breathing can be viewed as competition between the along-chain elastic energy and the interchain binding energy.


Assuntos
Pareamento Incorreto de Bases , DNA/química , DNA/ultraestrutura , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Dinâmica não Linear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...