Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(1): e0278754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36701352

RESUMO

Operating wind-power projects often includes protecting volant wildlife. One method for doing this uses an automated system to detect, identify (through use of artificial intelligence; AI), track animals (targets) and curtail turbines when risk of a collision is high. However, assessments of the effectiveness, in terms of identification accuracy and subsequent turbine curtailment of such systems are lacking. Over 1 year, we assessed such an automated system installed at a wind project in California, USA to determine its identification accuracy and rates at which "virtual" curtailments were ordered (without slowing turbines), for eagles (intended targets) and non-eagle targets. The system correctly identified 77% of eagles and 85% of non-eagles. Curtailment orders occurred 6 times more frequently for non-eagle targets (5,439) than for eagle targets (850). Greater abundance of common ravens that were misidentified as eagles influenced the effectiveness of the system by greatly increasing unintended curtailment orders. The balance between costs (price of the IdentiFlight system, reduced energy generation, turbine wear and maintenance) and benefits (reduced collisions between intended target species and turbines) may depend upon the biological setting, speed at which operators can curtail turbines, and the objectives of the operator when considering the IdentiFlight system.


Assuntos
Inteligência Artificial , Conservação dos Recursos Naturais , Animais , Conservação dos Recursos Naturais/métodos , Animais Selvagens
2.
R Soc Open Sci ; 9(3): 211558, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35360356

RESUMO

Renewable energy production can kill individual birds, but little is known about how it affects avian populations. We assessed the vulnerability of populations for 23 priority bird species killed at wind and solar facilities in California, USA. Bayesian hierarchical models suggested that 48% of these species were vulnerable to population-level effects from added fatalities caused by renewables and other sources. Effects of renewables extended far beyond the location of energy production to impact bird populations in distant regions across continental migration networks. Populations of species associated with grasslands where turbines were located were most vulnerable to wind. Populations of nocturnal migrant species were most vulnerable to solar, despite not typically being associated with deserts where the solar facilities we evaluated were located. Our findings indicate that addressing declines of North American bird populations requires consideration of the effects of renewables and other anthropogenic threats on both nearby and distant populations of vulnerable species.

3.
Ecol Evol ; 12(2): e08395, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35154643

RESUMO

Recent advances in digital data collection have spurred accumulation of immense quantities of data that have potential to lead to remarkable ecological insight, but that also present analytic challenges. In the case of biologging data from birds, common analytical approaches to classifying movement behaviors are largely inappropriate for these massive data sets.We apply a framework for using K-means clustering to classify bird behavior using points from short time interval GPS tracks. K-means clustering is a well-known and computationally efficient statistical tool that has been used in animal movement studies primarily for clustering segments of consecutive points. To illustrate the utility of our approach, we apply K-means clustering to six focal variables derived from GPS data collected at 1-11 s intervals from free-flying bald eagles (Haliaeetus leucocephalus) throughout the state of Iowa, USA. We illustrate how these data can be used to identify behaviors and life-stage- and age-related variation in behavior.After filtering for data quality, the K-means algorithm identified four clusters in >2 million GPS telemetry data points. These four clusters corresponded to three movement states: ascending, flapping, and gliding flight; and one non-moving state: perching. Mapping these states illustrated how they corresponded tightly to expectations derived from natural history observations; for example, long periods of ascending flight were often followed by long gliding descents, birds alternated between flapping and gliding flight.The K-means clustering approach we applied is both an efficient and effective mechanism to classify and interpret short-interval biologging data to understand movement behaviors. Furthermore, because it can apply to an abundance of very short, irregular, and high-dimensional movement data, it provides insight into small-scale variation in behavior that would not be possible with many other analytical approaches.

4.
Ecol Appl ; 32(3): e2544, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35080801

RESUMO

In the United States, the Bald and Golden Eagle Protection Act prohibits take of golden eagles (Aquila chrysaetos) unless authorized by permit, and stipulates that all permitted take must be sustainable. Golden eagles are unintentionally killed in conjunction with many lawful activities (e.g., electrocution on power poles, collision with wind turbines). Managers who issue permits for incidental take of golden eagles must determine allowable take levels and manage permitted take accordingly. To aid managers in making these decisions in the western United States, we used an integrated population model to obtain estimates of golden eagle vital rates and population size, and then used those estimates in a prescribed take level (PTL) model to estimate the allowable take level. Estimated mean annual survival rates for golden eagles ranged from 0.70 (95% credible interval = 0.66-0.74) for first-year birds to 0.90 (0.88-0.91) for adults. Models suggested a high proportion of adult female golden eagles attempted to breed and breeding pairs fledged a mean of 0.53 (0.39-0.72) young annually. Population size in the coterminous western United States has averaged ~31,800 individuals for several decades, with λ = 1.0 (0.96-1.05). The PTL model estimated a median allowable take limit of ~2227 (708-4182) individuals annually given a management objective of maintaining a stable population. We estimate that take averaged 2572 out of 4373 (59%) deaths annually, based on a representative sample of transmitter-tagged golden eagles. For the subset of golden eagles that were recovered and a cause of death determined, anthropogenic mortality accounted for an average of 74% of deaths after their first year; leading forms of take over all age classes were shooting (~670 per year), collisions (~611), electrocutions (~506), and poisoning (~427). Although observed take overlapped the credible interval of our allowable take estimate and the population overall has been stable, our findings indicate that additional take, unless mitigated for, may not be sustainable. Our analysis demonstrates the utility of the joint application of integrated population and prescribed take level models to management of incidental take of a protected species.


Assuntos
Águias , Fatores Etários , Animais , Causas de Morte , Feminino , Humanos , Propilaminas , Sulfetos , Taxa de Sobrevida , Estados Unidos
5.
Ecol Evol ; 11(16): 11267-11274, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34429916

RESUMO

There is increasing pressure on wind energy facilities to manage or mitigate for wildlife collisions. However, little information exists regarding spatial and temporal variation in collision rates, meaning that mitigation is most often a blanket prescription. To address this knowledge gap, we evaluated variation among turbines and months in an aspect of collision risk-probability of entry by an eagle into a rotor-swept zone (hereafter, "probability of entry"). We examined 10,222 eagle flight paths identified and recorded by an automated bird monitoring system at a wind energy facility in Wyoming, USA. Probabilities of entry per turbine-month combination were 4.03 times greater in some months than others, ranging 0.15 to 0.62. The overall probability of entry for the riskiest turbine (i.e., the one with the greatest probability of entry) was 2.39 times greater than the least-risky turbine. Our methodology describes large variation across turbines and months in the probability of entry. If subsequently combined with information on other sources of variation (i.e., weather, topography), this approach can identify risky versus safe situations for eagles under which cost of management, curtailment prescriptions, and collision risk can be simultaneously minimized.

6.
Conserv Biol ; 35(1): 64-76, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31913528

RESUMO

Increasing global energy demand is fostering the development of renewable energy as an alternative to fossil fuels. However, renewable energy facilities may adversely affect wildlife. Facility siting guidelines recommend or require project developers complete pre- and postconstruction wildlife surveys to predict risk and estimate effects of proposed projects. Despite this, there are no published studies that have quantified the types of surveys used or how survey types are standardized within and across facilities. We evaluated 628 peer-reviewed publications, unpublished reports, and citations, and we analyzed data from 525 of these sources (203 facilities: 193 wind and 10 solar) in the United States and Canada to determine the frequency of pre- and postconstruction surveys and whether that frequency changed over time; frequency of studies explicitly designed to allow before-after or impact-control analyses; and what types of survey data were collected during pre- and postconstruction periods and how those data types were standardized across periods and among facilities. Within our data set, postconstruction monitoring for wildlife fatalities and habitat use was a standard practice (n = 446 reports), but preconstruction estimation of baseline wildlife habitat use and mortality was less frequently reported (n = 84). Only 22% (n = 45) of the 203 facilities provided data from both pre- and postconstruction, and 29% (n = 59) had experimental study designs. Of 108 facilities at which habitat-use surveys were conducted, only 3% estimated of detection probability. Thus, the available data generally preclude comparison of biological data across construction periods and among facilities. Use of experimental study designs and following similar field protocols would improve the knowledge of how renewable energy affects wildlife. Article Impact Statement Many surveys at wind and solar facilities provide limited information on wildlife use and fatality rates.


Limitaciones, Falta de Estandarización y las Mejores Prácticas Recomendadas en Estudios de los Efectos de las Energías Renovables sobre las Aves y los Murciélagos Resumen La creciente demanda global por energía está fomentando el desarrollo de energías renovables como una alternativa a los combustibles fósiles. Sin embargo, las instalaciones de energías renovables pueden afectar de manera adversa a la fauna. Las pautas para la ubicación de dichas instalaciones recomiendan o requieren que los desarrolladores de los proyectos realicen censos previa y posteriormente a la construcción de las instalaciones para pronosticar el riesgo y estimar los efectos de los proyectos propuestos. A pesar de esto, no existen estudios publicados que hayan cuantificado los tipos de censo usados o cómo los tipos de censo están estandarizados para las instalaciones en específico y en general. Evaluamos 628 publicaciones revisadas por pares, reportes sin publicar y referencias y analizamos los datos de 525 de estas fuentes (203 instalaciones: 193 de energía eólica y 10 de energía solar) en los Estados Unidos y Canadá para determinar la frecuencia de los censos previos y posteriores a la construcción y si dicha frecuencia cambió con el tiempo; para determinar la frecuencia de los estudios diseñados explícitamente para permitir los análisis antes-y-después o de control-impacto; y para determinar cuáles tipos de datos fueron recolectados previa y posteriormente a la construcción y cómo aquellos tipos de datos estuvieron estandarizados a través de los periodos y entre las instalaciones. Dentro de nuestro conjunto de datos, el monitoreo posterior a la construcción de las fatalidades faunísticas y el uso de hábitat fue una práctica común (n = 446 reportes), pero la estimación previa a la construcción de la línea base del uso de hábitat por la fauna y la mortalidad estuvo reportada con menor frecuencia (n = 84). Sólo el 22% (n = 45) de las 203 instalaciones proporcionaron datos de los censos previos y posteriores a la construcción y el 29% (n = 59) contó con diseño de estudios experimentales. De las 108 instalaciones en las que se realizaron censos de uso de hábitat, sólo el 3% incluyó la estimación de la probabilidad de detección. Por lo tanto, los datos disponibles generalmente impiden la comparación de los datos biológicos durante los periodos de construcción y entre las instalaciones. El uso del diseño de estudios experimentales y el seguimiento de protocolos de campo similares mejoraría el conocimiento sobre cómo las energías renovables afectan a la fauna.


Assuntos
Quirópteros , Animais , Aves , Canadá , Conservação dos Recursos Naturais , Padrões de Referência , Energia Renovável , Vento
8.
Conserv Biol ; 31(2): 406-415, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27677518

RESUMO

Renewable energy production is expanding rapidly despite mostly unknown environmental effects on wildlife and habitats. We used genetic and stable isotope data collected from Golden Eagles (Aquila chrysaetos) killed at the Altamont Pass Wind Resource Area (APWRA) in California in demographic models to test hypotheses about the geographic extent and demographic consequences of fatalities caused by renewable energy facilities. Geospatial analyses of δ2 H values obtained from feathers showed that ≥25% of these APWRA-killed eagles were recent immigrants to the population, most from long distances away (>100 km). Data from nuclear genes indicated this subset of immigrant eagles was genetically similar to birds identified as locals from the δ2 H data. Demographic models implied that in the face of this mortality, the apparent stability of the local Golden Eagle population was maintained by continental-scale immigration. These analyses demonstrate that ecosystem management decisions concerning the effects of local-scale renewable energy can have continental-scale consequences.


Assuntos
Conservação dos Recursos Naturais , Águias , Vento , Animais , California , Plumas , Dinâmica Populacional , Energia Renovável
9.
J R Soc Interface ; 12(112)2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26538556

RESUMO

Large birds regularly use updrafts to subsidize flight. Although most research on soaring bird flight has focused on use of thermal updrafts, there is evidence suggesting that many species are likely to use multiple modes of subsidy. We tested the degree to which a large soaring species uses multiple modes of subsidy to provide insights into the decision-making that underlies flight behaviour. We statistically classified more than 22 000 global positioning satellite-global system for mobile communications telemetry points collected at 30-s intervals to identify the type of subsidized flight used by 32 migrating golden eagles during spring in eastern North America. Eagles used subsidized flight on 87% of their journey. They spent 41.9% ± 1.5 ([Formula: see text], range: 18-56%) of their subsidized northbound migration using thermal soaring, 45.2% ± 2.1 (12-65%) of time gliding between thermals, and 12.9% ± 2.2 (1-55%) of time using orographic updrafts. Golden eagles responded to the variable local-scale meteorological events they encountered by switching flight behaviour to take advantage of multiple modes of subsidy. Orographic soaring occurred more frequently in morning and evening, earlier in the migration season, and when crosswinds and tail winds were greatest. Switching between flight modes allowed migration for relatively longer periods each day and frequent switching behaviour has implications for a better understanding of avian flight behaviour and of the evolution of use of subsidy in flight.


Assuntos
Águias/fisiologia , Voo Animal/fisiologia , Modelos Biológicos , Animais
10.
Environ Int ; 79: 51-5, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25795925

RESUMO

Lead is a prominent and highly toxic contaminant with important impacts to wildlife. To understand the degree to which wildlife populations are chronically exposed, we quantified lead levels within American black vultures (Coragyps atratus; BLVU) and turkey vultures (Cathartes aura; TUVU), two species that are useful as environmental sentinels in eastern North America. Every individual sampled (n=108) had bone lead levels indicative of chronic exposure to anthropogenic lead (BLVU: x¯=36.99 ± 55.21 mg Pb/kg tissue (±SD); TUVU: x¯=23.02 ± 18.77 mg/kg). Only a few showed evidence of recent lead exposure (BLVU liver: x¯=0.78 ± 0.93 mg/kg; TUVU liver: x¯=0.55 ± 0.34 mg/kg). Isotopic ratios suggested multiple potential sources of lead including ammunition, gasoline, coal-fired power plants, and zinc smelting. Black and turkey vultures range across eastern North America, from Quebec to Florida and individuals may traverse thousands of kilometers annually. The extent to which vultures are exposed suggests that anthropogenic lead permeates eastern North American ecosystems to a previously unrecognized degree. Discovery of an epidemic of chronic lead exposure in such widespread and common species and the failure of soft-tissue sampling to diagnose this pattern has dramatic implications for understanding modern wildlife and human health concerns.


Assuntos
Exposição Ambiental/análise , Falconiformes , Chumbo/análise , Animais , Animais Selvagens , Fêmur/química , Fígado/química , Virginia
11.
PLoS One ; 7(4): e35548, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558166

RESUMO

To maximize fitness, flying animals should maximize flight speed while minimizing energetic expenditure. Soaring speeds of large-bodied birds are determined by flight routes and tradeoffs between minimizing time and energetic costs. Large raptors migrating in eastern North America predominantly glide between thermals that provide lift or soar along slopes or ridgelines using orographic lift (slope soaring). It is usually assumed that slope soaring is faster than thermal gliding because forward progress is constant compared to interrupted progress when birds pause to regain altitude in thermals. We tested this slope-soaring hypothesis using high-frequency GPS-GSM telemetry devices to track golden eagles during northbound migration. In contrast to expectations, flight speed was slower when slope soaring and eagles also were diverted from their migratory path, incurring possible energetic costs and reducing speed of progress towards a migratory endpoint. When gliding between thermals, eagles stayed on track and fast gliding speeds compensated for lack of progress during thermal soaring. When thermals were not available, eagles minimized migration time, not energy, by choosing energetically expensive slope soaring instead of waiting for thermals to develop. Sites suited to slope soaring include ridges preferred for wind-energy generation, thus avian risk of collision with wind turbines is associated with evolutionary trade-offs required to maximize fitness of time-minimizing migratory raptors.


Assuntos
Migração Animal/fisiologia , Águias/fisiologia , Metabolismo Energético/fisiologia , Voo Animal/fisiologia , Altitude , Animais , Fenômenos Biomecânicos , Ecologia , Masculino , Telemetria , Vento , Asas de Animais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...