Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 20(4): 637-649, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022315

RESUMO

KDM6A, an X chromosome-linked histone lysine demethylase, was reported to be frequently mutated in many tumor types including breast and bladder cancer. However, the functional role of KDM6A is not fully understood. Using MCF10A as a model of non-tumorigenic epithelial breast cells, we found that silencing KDM6A promoted cell migration and transformation demonstrated by the formation of tumor-like acini in three-dimensional culture. KDM6A loss reduced the sensitivity of MCF10A cells to therapeutic agents commonly used to treat patients with triple-negative breast cancer and also induced TGFß extracellular secretion leading to suppressed expression of cytotoxic genes in normal human CD8+ T cells in vitro. Interestingly, when cells were treated with TGFß, de novo synthesis of KDM6A protein was suppressed while TGFB1 transcription was enhanced, indicating a TGFß/KDM6A-negative regulatory axis. Furthermore, both KDM6A deficiency and TGFß treatment promoted disorganized acinar structures in three-dimensional culture, as well as transcriptional profiles associated with epithelial-to-mesenchymal transition and metastasis, suggesting KDM6A depletion and TGFß drive tumor progression. IMPLICATIONS: Our study provides the preclinical rationale for evaluating KDM6A and TGFß in breast tumor samples as predictors for response to chemo and immunotherapy, informing personalized therapy based on these findings.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias da Bexiga Urinária , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Células Epiteliais/patologia , Feminino , Histona Desmetilases/genética , Humanos , Fator de Crescimento Transformador beta , Neoplasias da Bexiga Urinária/genética
2.
Cancers (Basel) ; 13(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638374

RESUMO

Bladder cancer is the 10th most commonly diagnosed cancer in the world, accounting for around 573,000 new cases and 213,000 deaths in 2020. The current standard treatment for locally advanced bladder cancer is neoadjuvant cisplatin (NAC)-based chemotherapy followed by cystectomy. The significant progress being made in the genomic and molecular understandings of bladder cancer has uncovered the genetic alterations and signaling pathways that drive bladder cancer progression. These developments have led to a dramatic increase in the evaluation of molecular agents targeting at these alterations. One example is Erdafitinib, a first-in-class FGFR inhibitor being approved as second-line treatment for locally advanced or metastatic urothelial carcinoma with FGFR mutations. Immunotherapy has also been approved as second-line treatment for advanced and metastatic bladder cancer. Preclinical studies suggest targeted therapy combined with immunotherapy has the potential to markedly improve patient outcome. Given the prevalence of FGFR alternations in bladder cancer, here we review recent preclinical and clinical studies on FGFR inhibitors and analyze possible drug resistance mechanisms to these agents. We also discuss FGFR inhibitors in combination with other therapies and its potential to improve outcome.

4.
Nat Rev Cancer ; 21(2): 104-121, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268841

RESUMO

The field of research in bladder cancer has seen significant advances in recent years. Next-generation sequencing has identified the genes most mutated in bladder cancer. This wealth of information allowed the definition of driver mutations, and identification of actionable therapeutic targets, as well as a clearer picture of patient prognosis and therapeutic direction. In a similar vein, our understanding of the cellular aspects of bladder cancer has grown. The identification of the cellular geography and the populations of different cell types and quantifications of normal and abnormal cell types in tumours provide a better prediction of therapeutic response. Non-invasive methods of diagnosis, including liquid biopsies, have seen major advances as well. These methods will likely find considerable utility in assessing minimal residual disease following treatment and for early-stage diagnosis. A significant therapeutic impact on patients with bladder cancer is found in the use of immune checkpoint inhibitor therapeutics. These therapeutics have been shown to cure some patients with bladder cancer and significantly decrease adverse events. These developments provide patients with better monitoring opportunities, unique therapeutic options and greater hope for prolonged survival.


Assuntos
Carcinoma de Células de Transição/genética , Neoplasias da Bexiga Urinária/genética , Animais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Fibroblastos Associados a Câncer/patologia , Carcinoma de Células de Transição/patologia , Carcinoma de Células de Transição/terapia , Modelos Animais de Doenças , Fatores Epidemiológicos , Epigênese Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Mutação , Estadiamento de Neoplasias , Prognóstico , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/terapia
5.
Commun Biol ; 3(1): 720, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247183

RESUMO

Immunotherapies targeting the PD-1/PD-L1 axis are now a mainstay in the clinical management of multiple cancer types, however, many tumors still fail to respond. CCL2 is highly expressed in various cancer types and has been shown to be associated with poor prognosis. Inhibition or blockade of the CCL2/CCR2 signaling axis has thus been an area of interest for cancer therapy. Here we show across multiple murine tumor and metastasis models that CCR2 antagonism in combination with anti-PD-1 therapy leads to sensitization and enhanced tumor response over anti-PD-1 monotherapy. We show that enhanced treatment response correlates with enhanced CD8+ T cell recruitment and activation and a concomitant decrease in CD4+ regulatory T cell. These results provide strong preclinical rationale for further clinical exploration of combining CCR2 antagonism with PD-1/PD-L1-directed immunotherapies across multiple tumor types especially given the availability of small molecule CCR2 inhibitors and antibodies.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/terapia , Receptores CCR2/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Terapia Combinada , Feminino , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , RNA-Seq , Neoplasias da Bexiga Urinária/terapia
6.
Sci Adv ; 5(2): eaav2437, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30801016

RESUMO

While a fraction of cancer patients treated with anti-PD-1 show durable therapeutic responses, most remain unresponsive, highlighting the need to better understand and improve these therapies. Using an in vivo screening approach with a customized shRNA pooled library, we identified DDR2 as a leading target for the enhancement of response to anti-PD-1 immunotherapy. Using isogenic in vivo murine models across five different tumor histologies-bladder, breast, colon, sarcoma, and melanoma-we show that DDR2 depletion increases sensitivity to anti-PD-1 treatment compared to monotherapy. Combination treatment of tumor-bearing mice with anti-PD-1 and dasatinib, a tyrosine kinase inhibitor of DDR2, led to tumor load reduction. RNA-seq and CyTOF analysis revealed higher CD8+ T cell populations in tumors with DDR2 depletion and those treated with dasatinib when either was combined with anti-PD-1 treatment. Our work provides strong scientific rationale for targeting DDR2 in combination with PD-1 inhibitors.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Dasatinibe/farmacologia , Receptor com Domínio Discoidina 2/antagonistas & inibidores , Sistemas de Liberação de Medicamentos , Imunidade Celular , Imunoterapia , Neoplasias Experimentais/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Receptor com Domínio Discoidina 2/imunologia , Feminino , Camundongos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Receptor de Morte Celular Programada 1/imunologia
7.
Mol Cancer Res ; 16(1): 69-77, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28970362

RESUMO

Urothelial carcinoma accounts for most of the bladder cancer cases. Using next-generation sequencing (NGS) technology, we found that a significant percentage (83%) of tumors had mutations in chromatin-remodeling genes. Here, we examined the functional relevance of mutations in two chromatin-remodeling genes, EP300 and its paralog, CREBBP, which are mutated in almost one-third of patients. Interestingly, almost half of missense mutations cluster in the histone-acetyltransferase (HAT) domain of EP300/CREBBP. This domain catalyzes the transfer of an acetyl group to target molecules such as histones, thereby regulating chromatin dynamics. Thus, patients with EP300 or CREBBP mutations may have alterations in the ability of the corresponding proteins to modify histone proteins and control transcriptional profiles. In fact, it was determined that many of the missense HAT mutations in EP300 (64%) and CREBBP (78%) were HAT-inactivating. These inactivating mutations also correlated with invasive disease in patients. Strikingly, the prediction software Mutation Assessor accurately predicted the functional consequences of each HAT missense mutation. Finally, a gene expression signature was developed that associated with loss of HAT activity and that this signature was associated with more aggressive cancer in four patient datasets. Further supporting the notion that this score accurately reflects HAT activity, we found it is responsive to treatment of cancer cells to mocetinostat, a histone deacetylase (HDAC) inhibitor.Implication: This study provides a rationale for targeted sequencing of EP300 and CREBBP and use of a gene profiling signature for predicting therapeutic response in patients. Mol Cancer Res; 16(1); 69-77. ©2017 AACR.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Neoplasias da Bexiga Urinária/genética , Linhagem Celular Tumoral , Humanos , Mutação de Sentido Incorreto , Neoplasias da Bexiga Urinária/patologia
8.
Cancer Res ; 77(18): 4858-4867, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28674079

RESUMO

Elevated tumor expression of the cell surface GPI-linked CD24 protein signals poor patient prognosis in many tumor types. However, some cancer cells selected to be negative for surface CD24 (surCD24-) still retain aggressive phenotypes in vitro and in vivo Here, we resolve this apparent paradox with the discovery of biologically active, nuclear CD24 (nucCD24) and finding that its levels are unchanged in surCD24- cells. Using the complementary techniques of biochemical cellular fractionation and immunofluorescence, we demonstrate a signal for CD24 in the nucleus in cells from various histologic types of cancer. Nuclear-specific expression of CD24 (NLS-CD24) increased anchorage-independent growth in vitro and tumor formation in vivo Immunohistochemistry of patient tumor samples revealed the presence of nucCD24, whose signal intensity correlated positively with the presence of metastatic disease. Analysis of gene expression between cells expressing CD24 and NLS-CD24 revealed a unique nucCD24 transcriptional signature. The median score derived from this signature was able to stratify overall survival in four patient datasets from bladder cancer and five patient datasets from colorectal cancer. Patients with high scores (more nucCD24-like) had reduced survival. These findings define a novel and functionally important intracellular location of CD24; they explain why surCD24- cells can remain aggressive, and they highlight the need to consider nucCD24 in both fundamental research and therapeutic development. Cancer Res; 77(18); 4858-67. ©2017 AACR.


Assuntos
Biomarcadores Tumorais/metabolismo , Antígeno CD24/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Neoplasias da Bexiga Urinária/patologia , Animais , Apoptose , Humanos , Metástase Linfática , Camundongos , Camundongos Nus , Invasividade Neoplásica , Estadiamento de Neoplasias , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancer Res ; 76(17): 5175-85, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27312530

RESUMO

In principle, the inhibition of candidate gain-of-function genes defined through genomic analyses of large patient cohorts offers an attractive therapeutic strategy. In this study, we focused on changes in expression of CD24, a well-validated clinical biomarker of poor prognosis and a driver of tumor growth and metastasis, as a benchmark to assess functional relevance. Through this approach, we identified GON4L as a regulator of CD24 from screening a pooled shRNA library of 176 candidate gain-of-function genes. GON4L depletion reduced CD24 expression in human bladder cancer cells and blocked cell proliferation in vitro and tumor xenograft growth in vivo Mechanistically, GON4L interacted with transcription factor YY1, promoting its association with the androgen receptor to drive CD24 expression and cell growth. In clinical bladder cancer specimens, expression of GON4L, YY1, and CD24 was elevated compared with normal bladder urothelium. This pathway is biologically relevant in other cancer types as well, where CD24 and the androgen receptor are clinically prognostic, given that silencing of GON4L and YY1 suppressed CD24 expression and growth of human lung, prostate, and breast cancer cells. Overall, our results define GON4L as a novel driver of cancer growth, offering new biomarker and therapeutic opportunities. Cancer Res; 76(17); 5175-85. ©2016 AACR.


Assuntos
Antígeno CD24/metabolismo , Carcinoma de Células de Transição/patologia , Receptores Androgênicos/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias da Bexiga Urinária/patologia , Fator de Transcrição YY1/metabolismo , Animais , Western Blotting , Carcinoma de Células de Transição/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Proteínas Correpressoras , Proteínas de Ligação a DNA , Feminino , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Imunoprecipitação , Masculino , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Neoplasias da Bexiga Urinária/metabolismo
10.
Mol Cancer Res ; 13(9): 1306-15, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26078295

RESUMO

UNLABELLED: Next-generation sequencing (NGS) of human bladder cancer has revealed many gene alterations compared with normal tissue, with most being predicted to be "loss of function." However, given the high number of alterations, evaluating the functional impact of each is impractical. Here, we develop and use a high-throughput, in vivo strategy to determine which alterations are loss of function in tumor growth suppressors. Genes reported as altered by NGS in bladder cancer patients were bioinformatically processed by MutationTaster and MutationAssessor, with 283 predicted as loss of function. An shRNA lentiviral library targeting these genes was transduced into T24 cells, a nontumorigenic human bladder cancer cell line, followed by injection into mice. Tumors that arose were sequenced and the dominant shRNA constructs were found to target IQGAP1, SAMD9L, PCIF1, MED1, and KATNAL1 genes. In vitro validation experiments revealed that shRNA molecules directed at IQGAP1 showed the most profound increase in anchorage-independent growth of T24 cells. The clinical relevance of IQGAP1 as a tumor growth suppressor is supported by the finding that its expression is lower in bladder cancer compared with benign patient urothelium in multiple independent datasets. Lower IQGAP1 protein expression associated with higher tumor grade and decreased patient survival. Finally, depletion of IQGAP1 leads to increased TGFBR2 with TGFß signaling, explaining in part how reduced IQGAP1 promotes tumor growth. These findings suggest IQGAP1 is a bladder tumor growth suppressor that works via modulating TGFß signaling and is a potentially clinically useful biomarker. IMPLICATIONS: This study used gene mutation information from patient-derived bladder tumor specimens to inform the development of a screen used to identify novel tumor growth suppressors. This included identification of the protein IQGAP1 as a potent bladder cancer growth suppressor.


Assuntos
Genes Supressores de Tumor , Testes Genéticos/métodos , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Neoplasias da Bexiga Urinária/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Computadores Moleculares , Intervalo Livre de Doença , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Invasividade Neoplásica , Prognóstico , RNA Interferente Pequeno/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/metabolismo , Proteínas Ativadoras de ras GTPase/genética
11.
J Natl Cancer Inst ; 106(5)2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24700805

RESUMO

BACKGROUND: Bladder cancer is the most common malignancy of the urinary system, yet our molecular understanding of this disease is incomplete, hampering therapeutic advances. METHODS: Here we used a genome-wide functional short-hairpin RNA (shRNA) screen to identify suppressors of in vivo bladder tumor xenograft growth (n = 50) using bladder cancer UMUC3 cells. Next-generation sequencing was used to identify the most frequently occurring shRNAs in tumors. Genes so identified were studied in 561 patients with bladder cancer for their association with stratification of clinical outcome by Kaplan-Meier analysis. The best prognostic marker was studied to determine its mechanism in tumor suppression using anchorage-dependent and -independent growth, xenograft (n = 20), and metabolomic assays. Statistical significance was determined using two-sided Student t test and repeated-measures statistical analysis. RESULTS: We identified the glycogen debranching enzyme AGL as a prognostic indicator of patient survival (P = .04) and as a novel regulator of bladder cancer anchorage-dependent (P < .001), anchorage-independent (mean ± standard deviation, 180 ± 23.1 colonies vs 20±9.5 in control, P < .001), and xenograft growth (P < .001). Rescue experiments using catalytically dead AGL variants revealed that this effect is independent of AGL enzymatic functions. We demonstrated that reduced AGL enhances tumor growth by increasing glycine synthesis through increased expression of serine hydroxymethyltransferase 2. CONCLUSIONS: Using an in vivo RNA interference screen, we discovered that AGL, a glycogen debranching enzyme, has a biologically and statistically significant role in suppressing human cancer growth.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio/deficiência , Neoplasias da Bexiga Urinária/enzimologia , Neoplasias da Bexiga Urinária/patologia , Animais , Linhagem Celular Tumoral , Estudo de Associação Genômica Ampla , Sistema da Enzima Desramificadora do Glicogênio/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Doença de Depósito de Glicogênio/enzimologia , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , RNA Interferente Pequeno/genética , Neoplasias da Bexiga Urinária/genética
12.
Proc Natl Acad Sci U S A ; 109(51): E3588-96, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23012401

RESUMO

Overexpression of CD24, a glycosyl phosphatidylinositol-linked sialoglycoprotein, is associated with poor outcome in urothelial carcinoma and contributes to experimental tumor growth and metastasis. However, the requirement for CD24 (Cd24a in mice) in tumorigenesis and spontaneous metastasis from the orthotopic site remains uncharacterized. Using N-butyl-N-(4-hydroxybutyl) nitrosamine induction of invasive and metastatic bladder cancer, we show that Cd24a-deficient male mice developed fewer bladder tumors than C57BL/6 control male mice. Evaluating only mice with evidence of primary tumors, we observed that Cd24a-deficient male mice also had fewer metastases than wild-type counterparts. In parallel observations, stratification of patients based on CD24 immunohistochemical expression in their tumors revealed that high levels of CD24 are associated with poor prognosis in males. In female patients and mice the above observations were not present. Given the significant role of CD24 in males, we sought to assess the relationship between androgen and CD24 regulation. We discovered that androgen receptor knockdown in UM-UC-3 and TCCSUP human urothelial carcinoma cell lines resulted in suppression of CD24 expression and cell proliferation. Androgen treatment also led to increased CD24 promoter activity, dependent on the presence of androgen receptor. In vivo, androgen deprivation resulted in reduced growth and CD24 expression of UM-UC-3 xenografts, and the latter was rescued by exogenous CD24 overexpression. These findings demonstrate an important role for CD24 in urothelial tumorigenesis and metastasis in male mice and indicate that CD24 is androgen regulated, providing the foundation for urothelial bladder cancer therapy with antiandrogens.


Assuntos
Androgênios/metabolismo , Antígeno CD24/biossíntese , Regulação Neoplásica da Expressão Gênica , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Urotélio/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Imuno-Histoquímica/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Metástase Neoplásica , Transplante de Neoplasias , Regiões Promotoras Genéticas , Receptores Androgênicos/metabolismo , Fatores Sexuais
13.
J Biol Chem ; 286(28): 25377-86, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21592959

RESUMO

Epidermal growth factor receptor (EGFR) is involved in development and progression of many human cancers. We have previously demonstrated that the ubiquitin-specific peptidase Usp18 (Ubp43) is a potent regulator of EGFR protein expression. Here we report that the 3'-untranslated region (3'-UTR) of the EGFR message modulates RNA translation following cell treatment with Usp18 siRNA, suggesting microRNA as a possible mediator. Given earlier evidence of EGFR regulation by the microRNA miR-7, we assessed whether miR-7 mediates Usp18 siRNA effects. We found that Usp18 depletion elevates miR-7 levels in several cancer cell lines because of a transcriptional activation and/or mRNA stabilization of miR-7 host genes and that miR-7 acts downstream of Usp18 to regulate EGFR mRNA translation via the 3'-UTR. Also, depletion of Usp18 led to a decrease in protein levels of other known oncogenic targets of miR-7, reduced cell proliferation and soft agar colony formation, and increased apoptosis. Notably, all of these phenotypes were reversed by a specific inhibitor of miR-7. Thus, our findings support a model in which Usp18 inhibition promotes up-regulation of miR-7, which in turn inhibits EGFR expression and the tumorigenic activity of cancer cells.


Assuntos
Regiões 3' não Traduzidas , Endopeptidases/metabolismo , Receptores ErbB/biossíntese , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , RNA Neoplásico/metabolismo , Apoptose/genética , Proliferação de Células , Endopeptidases/genética , Receptores ErbB/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , MicroRNAs/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Estabilidade de RNA/genética , RNA Neoplásico/genética , Ubiquitina Tiolesterase
14.
Exp Cell Res ; 316(13): 2136-51, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20420830

RESUMO

Endocytosis of signaling receptors, such as epidermal growth factor receptor (EGFR), tightly controls the signal transduction process triggered by ligand activation of these receptors. To identify new regulators of the endocytic trafficking of EGFR an RNA interference screen was performed for genes involved in ubiquitin conjugation and down-regulation of EGFR. The screen revealed that small interfering RNAs (siRNAs) that target the conserved ubiquitin-binding domain Uev1 increased down-regulation of EGFR. Since these siRNAs simultaneously targeted multiple genes containing a Uev1 domain, we analyzed the role of these gene products by overexpressing individual Uev1-related proteins. This analysis revealed that overexpression of Uev1A (UBE2V1) has no effect on the degradation of EGFR:EGF complexes. In contrast, overexpression of Uev1B (TMEM189-UBE2V1 isoform 2) slowed the degradation of EGF:receptor complexes. The Uev1B protein was found to strongly colocalize and associate with ubiquitin and Hrs in endosomes. Moreover, overexpression of Uev1B abrogated the ability of Hrs to colocalize with EGFR. The B-domain of Uev1B, and not the UEV-domain, was mainly responsible for the observed phenotypes suggesting the presence of a novel endosomal targeting sequence within the B-domain. Together, the data show that elevated levels of Uev1B protein in cells lead to decreased efficiency of endosomal sorting by associating with ubiquitinated proteins and Hrs.


Assuntos
Endocitose/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Receptores ErbB/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Células COS , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Células Cultivadas , Chlorocebus aethiops , Regulação para Baixo , Receptores ErbB/genética , Células HeLa , Humanos , Isoformas de Proteínas , Transporte Proteico , RNA Interferente Pequeno/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Enzimas de Conjugação de Ubiquitina/genética
15.
Curr Protoc Cell Biol ; Chapter 15: Unit 15.14, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20235100

RESUMO

Binding of epidermal growth factor (EGF) to the EGF receptor (EGFR) initiates signal transduction, ultimately leading to altered gene expression. Ligand-activated EGFR is also rapidly internalized and then targeted to lysosomes for degradation or recycled back to the plasma membrane. Endocytosis is a major regulator of EGFR signaling. Therefore, elucidation of the mechanisms of EGFR endocytosis is essential for a better understanding of EGFR biology. In order to achieve a comprehensive analysis of these mechanisms, reliable methods for measuring the rates of EGFR protein turnover and the rate parameters for individual steps of EGFR endocytic trafficking must be employed. The protocols in this unit describe methodologies to measure the rates of EGFR synthesis and degradation, to monitor EGF-induced down-regulation of surface EGFR, to measure the kinetic rate parameters of internalization, recycling, and degradation of radiolabeled EGF, and to perform radioiodination of EGF by the chloramine T method.


Assuntos
Bioquímica/métodos , Endocitose , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Animais , Regulação para Baixo , Receptores ErbB/biossíntese , Radioisótopos do Iodo , Camundongos , Células NIH 3T3 , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Coloração e Rotulagem , Sus scrofa
16.
Mol Biol Cell ; 20(6): 1833-44, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19158387

RESUMO

Elevated expression of epidermal growth factor receptor (EGFR) contributes to the progression of many types of cancer. Therefore, we developed a high-throughput screen to identify proteins that regulate the levels of EGFR in squamous cell carcinoma. Knocking down various ubiquitination-related genes with small interfering RNAs led to the identification of several novel genes involved in this process. One of these genes, Usp18, is a member of the ubiquitin-specific protease family. We found that knockdown of Usp18 in several cell lines reduced expression levels of EGFR by 50-80%, whereas the levels of other receptor tyrosine kinases remained unchanged. Overexpression of Usp18 elevated EGFR levels in a manner requiring the catalytic cysteine of Usp18. Analysis of metabolically radiolabeled cells showed that the rate of EGFR protein synthesis was reduced up to fourfold in the absence of Usp18. Interestingly, this dramatic reduction occurred despite no change in the levels of EGFR mRNA. This suggests that depletion of Usp18 inhibited EGFR mRNA translation. In fact, this inhibition required the presence of native 5' and 3' untranslated region sequences on EGFR mRNA. Together, our data provide evidence for the novel mechanism of EGFR regulation at the translational step of receptor synthesis.


Assuntos
Endopeptidases/metabolismo , Receptores ErbB/biossíntese , Interferência de RNA , Animais , Linhagem Celular , Chlorocebus aethiops , Regulação para Baixo , Endopeptidases/genética , Receptores ErbB/genética , Deleção de Genes , Genes Reporter/genética , RNA Mensageiro/genética , Regulação para Cima
17.
EMBO J ; 27(24): 3221-34, 2008 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-19037259

RESUMO

The signalling lipid PI(3,5)P(2) is generated on endosomes and regulates retrograde traffic to the trans-Golgi network. Physiological signals regulate rapid, transient changes in PI(3,5)P(2) levels. Mutations that lower PI(3,5)P(2) cause neurodegeneration in human patients and mice. The function of Vac14 in the regulation of PI(3,5)P(2) was uncharacterized previously. Here, we predict that yeast and mammalian Vac14 are composed entirely of HEAT repeats and demonstrate that Vac14 exerts an effect as a scaffold for the PI(3,5)P(2) regulatory complex by direct contact with the known regulators of PI(3,5)P(2): Fig4, Fab1, Vac7 and Atg18. We also report that the mouse mutant ingls (infantile gliosis) results from a missense mutation in Vac14 that prevents the association of Vac14 with Fab1, generating a partial complex. Analysis of ingls and two additional mutants provides insight into the organization of the PI(3,5)P(2) regulatory complex and indicates that Vac14 mediates three distinct mechanisms for the rapid interconversion of PI3P and PI(3,5)P(2). Moreover, these studies show that the association of Fab1 with the complex is essential for viability in the mouse.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , Saccharomyces cerevisiae/metabolismo , Substituição de Aminoácidos/genética , Animais , Proteínas Relacionadas à Autofagia , Viabilidade Fetal , Flavoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Modelos Biológicos , Mutação de Sentido Incorreto , Monoéster Fosfórico Hidrolases , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Sequências Repetitivas de Aminoácidos , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
18.
Eukaryot Cell ; 5(4): 723-31, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16607019

RESUMO

Phosphoinositide lipids regulate complex events via the recruitment of proteins to a specialized region of the membrane at a specific time. Precise control of both the synthesis and turnover of phosphoinositide lipids is integral to membrane trafficking, signal transduction, and cytoskeletal rearrangements. Little is known about the acute regulation of the levels of these signaling lipids. When Saccharomyces cerevisiae cells are treated with hyperosmotic medium the levels of phosphatidylinositol 3,5-bisphosphate (PI3,5P(2)) increase 20-fold. Here we show that this 20-fold increase is rapid and occurs within 5 min. Surprisingly, these elevated levels are transient. Fifteen minutes following hyperosmotic shock they decrease at a rapid rate, even though the cells remain in hyperosmotic medium. In parallel with the rapid increase in the levels of PI3,5P(2), vacuole volume decreases rapidly. Furthermore, concomitant with a return to basal levels of PI3,5P(2) vacuole volume is restored. We show that Fig 4p, consistent with its proposed role as a PI3,5P(2) 5-phosphatase, is required in vivo for this rapid return to basal levels of PI3,5P(2). Surprisingly, we find that Fig 4p is also required for the hyperosmotic shock-induced increase in PI3,5P(2) levels. These findings demonstrate that following hyperosmotic shock, large, transient changes occur in the levels of PI3,5P(2) and further suggest that Fig 4p is important in regulating both the acute rise and subsequent fall in PI3,5P(2) levels.


Assuntos
Flavoproteínas/fisiologia , Pressão Osmótica , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Membrana Celular/química , Monoéster Fosfórico Hidrolases , Proteínas de Saccharomyces cerevisiae/análise , Fatores de Tempo , Regulação para Cima
19.
J Cell Biol ; 172(5): 693-704, 2006 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-16492811

RESUMO

Phosphoinositide-signaling lipids function in diverse cellular pathways. Dynamic changes in the levels of these signaling lipids regulate multiple processes. In particular, when Saccharomyces cerevisiae cells are exposed to hyperosmotic shock, PI3,5P2 (phosphatidylinositol [PI] 3,5-bisphosphate) levels transiently increase 20-fold. This causes the vacuole to undergo multiple acute changes. Control of PI3,5P2 levels occurs through regulation of both its synthesis and turnover. Synthesis is catalyzed by the PI3P 5-kinase Fab1p, and turnover is catalyzed by the PI3,5P2 5-phosphatase Fig4p. In this study, we show that two putative Fab1p activators, Vac7p and Vac14p, independently regulate Fab1p activity. Although Vac7p only regulates Fab1p, surprisingly, we find that Vac14 regulates both Fab1p and Fig4p. Moreover, Fig4p itself functions in both PI3,5P2 synthesis and turnover. In both the absence and presence of Vac7p, the Vac14p-Fig4p complex controls the hyperosmotic shock-induced increase in PI3,5P2 levels. These findings suggest that the dynamic changes in PI3,5P2 are controlled through a tight coupling of synthesis and turnover.


Assuntos
Flavoproteínas/fisiologia , Proteínas de Membrana/fisiologia , Fosfatos de Fosfatidilinositol/biossíntese , Proteínas de Saccharomyces cerevisiae/fisiologia , Proteínas de Membrana/genética , Mutagênese , Pressão Osmótica , Fenótipo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética
20.
J Cell Biol ; 156(6): 1015-28, 2002 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-11889142

RESUMO

Phosphatidylinositol 3,5-bisphosphate (PtdIns[3,5]P(2)) was first identified as a non-abundant phospholipid whose levels increase in response to osmotic stress. In yeast, Fab1p catalyzes formation of PtdIns(3,5)P(2) via phosphorylation of PtdIns(3)P. We have identified Vac14p, a novel vacuolar protein that regulates PtdIns(3,5)P(2) synthesis by modulating Fab1p activity in both the absence and presence of osmotic stress. We find that PtdIns(3)P levels are also elevated in response to osmotic stress, yet, only the elevation of PtdIns(3,5)P(2) levels are regulated by Vac14p. Under basal conditions the levels of PtdIns(3,5)P(2) are 18-28-fold lower than the levels of PtdIns(3)P, PtdIns(4)P, and PtdIns(4,5)P(2). After a 10 min exposure to hyperosmotic stress the levels of PtdIns(3,5)P(2) rise 20-fold, bringing it to a cellular concentration that is similar to the other phosphoinositides. This suggests that PtdIns(3,5)P(2) plays a major role in osmotic stress, perhaps via regulation of vacuolar volume. In fact, during hyperosmotic stress the vacuole morphology of wild-type cells changes dramatically, to smaller, more highly fragmented vacuoles, whereas mutants unable to synthesize PtdIns(3,5)P(2) continue to maintain a single large vacuole. These findings demonstrate that Vac14p regulates the levels of PtdIns(3,5)P(2) and provide insight into why PtdIns(3,5)P(2) levels rise in response to osmotic stress.


Assuntos
Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transporte Proteico/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulação para Cima/fisiologia , Vacúolos/metabolismo , Leveduras/metabolismo , Sequência de Bases/genética , Deleção Cromossômica , Regulação Fúngica da Expressão Gênica/fisiologia , Membranas Intracelulares/ultraestrutura , Dados de Sequência Molecular , Mutação/genética , Pressão Osmótica , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Homologia de Sequência de Aminoácidos , Vacúolos/ultraestrutura , Leveduras/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...