Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(10): e0140082, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26460848

RESUMO

In PBP4a, a Bacillus subtilis class-C1 penicillin-binding protein (PBP), four clustered lysine (K) residues, K86, K114, K119, and K265, protrude from domain II. Replacement of these amino acids with glutamine (Q) residues by site-directed mutagenesis yielded Mut4KQ PBP4a. When produced in Escherichia coli without its predicted Sec-signal peptide, wild-type (WT) PBP4a was found mainly associated with the host cytoplasmic membrane, whereas Mut4KQ PBP4a remained largely unbound. After purification, the capacities of the two proteins to bind to B. subtilis membranes were compared. The results were similar to those obtained in E. coli: in vitro, a much higher percentage of WT PBP4a than of Mut4KQ PBP4a was found to interact with B. subtilis membranes. Immunodetection of PBP4a in B. subtilis membrane extracts revealed that a processed form of this PBP (as indicated by its size) associates with the B. subtilis cytoplasmic membrane. In the absence of any amphiphilic peptide in PBP4a, the crown of positive charges on the surface of domain II is likely responsible for the cellular localization of this PBP and its attachment to the cytoplasmic membrane.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lisina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Membrana Celular/metabolismo , Dipeptidases/metabolismo , Escherichia coli , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Eletricidade Estática , Relação Estrutura-Atividade
2.
Biochemistry ; 52(15): 2627-37, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23560856

RESUMO

Bacterial dd-peptidases are the targets of the ß-lactam antibiotics. The sharp increase in bacterial resistance toward these antibiotics in recent years has stimulated the search for non-ß-lactam alternatives. The substrates of dd-peptidases are elements of peptidoglycan from bacterial cell walls. Attempts to base dd-peptidase inhibitor design on peptidoglycan structure, however, have not been particularly successful to date because the specific substrates for most of these enzymes are unknown. It is known, however, that the preferred substrates of low-molecular mass (LMM) class B and C dd-peptidases contain the free N-terminus of the relevant peptidoglycan. Two very similar LMMC enzymes, for example, the Actinomadura R39 dd-peptidase and Bacillus subtilis PBP4a, recognize a d-α-aminopimelyl terminus. The peptidoglycan of B. subtilis in the vegetative stage, however, has the N-terminal d-α-aminopimelyl carboxylic acid amidated. The question is, therefore, whether the dd-peptidases of B. subtilis are separately specific to carboxylate or carboxamide or have dual specificity. This paper describes an investigation of this issue with B. subtilis PBP4a. This enzyme was indeed found to have a dual specificity for peptide substrates, both in the acyl donor and in the acyl acceptor sites. In contrast, the R39 dd-peptidase, from an organism in which the peptidoglycan is not amidated, has a strong preference for a terminal carboxylate. It was also found that acyl acceptors, reacting with acyl-enzyme intermediates, were preferentially d-amino acid amides for PBP4a and the corresponding amino acids for the R39 dd-peptidase. Examination of the relevant crystal structures, aided by molecular modeling, suggested that the expansion of specificity in PBP4a accompanies a change of Arg351 in the R39 enzyme and most LMMC dd-peptidases to histidine in PBP4a and its orthologs in other Bacillus sp. This histidine, in neutral form at pH 7, appeared to be able to favorably interact with both carboxylate and carboxamide termini of substrates, in agreement with the kinetic data. It may still be possible, in specific cases, to combat bacteria with new antibiotics based on particular elements of their peptidoglycan structure.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Alanina/química , Alanina/metabolismo , Amidas/química , Amidas/metabolismo , Arginina/química , Arginina/metabolismo , Domínio Catalítico , Histidina/química , Histidina/metabolismo , Hidrólise , Cinética , Conformação Proteica , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Especificidade por Substrato
3.
Biochemistry ; 52(12): 2128-38, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23484909

RESUMO

Inhibitors of bacterial DD-peptidases represent potential antibiotics. In the search for alternatives to ß-lactams, we have investigated a series of compounds designed to generate transition state analogue structures upon reaction with DD-peptidases. The compounds contain a combination of a peptidoglycan-mimetic specificity handle and a warhead capable of delivering a tetrahedral anion to the enzyme active site. The latter includes a boronic acid, two alcohols, an aldehyde, and a trifluoroketone. The compounds were tested against two low-molecular mass class C DD-peptidases. As expected from previous observations, the boronic acid was a potent inhibitor, but rather unexpectedly from precedent, the trifluoroketone [D-α-aminopimelyl(1,1,1-trifluoro-3-amino)butan-2-one] was also very effective. Taking into account competing hydration, we found the trifluoroketone was the strongest inhibitor of the Actinomadura R39 DD-peptidase, with a subnanomolar (free ketone) inhibition constant. A crystal structure of the complex between the trifluoroketone and the R39 enzyme showed that a tetrahedral adduct had indeed formed with the active site serine nucleophile. The trifluoroketone moiety, therefore, should be considered along with boronic acids and phosphonates as a warhead that can be incorporated into new and effective DD-peptidase inhibitors and therefore, perhaps, antibiotics.


Assuntos
Actinomycetales/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , D-Ala-D-Ala Carboxipeptidase Tipo Serina/antagonistas & inibidores , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química , Antibacterianos/química , Antibacterianos/farmacologia , Butanonas/química , Butanonas/farmacologia , Domínio Catalítico , Cristalografia por Raios X , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Modelos Moleculares , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , beta-Lactamas/farmacologia
4.
Biochemistry ; 50(46): 10091-101, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-22029692

RESUMO

The bacterial DD-peptidases or penicillin-binding proteins (PBPs) catalyze the formation and regulation of cross-links in peptidoglycan biosynthesis. They are classified into two groups, the high-molecular mass (HMM) and low-molecular mass (LMM) enzymes. The latter group, which is subdivided into classes A-C (LMMA, -B, and -C, respectively), is believed to catalyze DD-carboxypeptidase and endopeptidase reactions in vivo. To date, the specificity of their reactions with particular elements of peptidoglycan structure has not, in general, been defined. This paper describes the steady-state kinetics of hydrolysis of a series of specific peptidoglycan-mimetic peptides, representing various elements of stem peptide structure, catalyzed by a range of LMM PBPs (the LMMA enzymes, Escherichia coli PBP5, Neisseria gonorrhoeae PBP4, and Streptococcus pneumoniae PBP3, and the LMMC enzymes, the Actinomadura R39 dd-peptidase, Bacillus subtilis PBP4a, and N. gonorrhoeae PBP3). The R39 enzyme (LMMC), like the previously studied Streptomyces R61 DD-peptidase (LMMB), specifically and rapidly hydrolyzes stem peptide fragments with a free N-terminus. In accord with this result, the crystal structures of the R61 and R39 enzymes display a binding site specific to the stem peptide N-terminus. These are water-soluble enzymes, however, with no known specific function in vivo. On the other hand, soluble versions of the remaining enzymes of those noted above, all of which are likely to be membrane-bound and/or associated in vivo and have been assigned particular roles in cell wall biosynthesis and maintenance, show little or no specificity for peptides containing elements of peptidoglycan structure. Peptidoglycan-mimetic boronate transition-state analogues do inhibit these enzymes but display notable specificity only for the LMMC enzymes, where, unlike peptide substrates, they may be able to effectively induce a specific active site structure. The manner in which LMMA (and HMM) DD-peptidases achieve substrate specificity, both in vitro and in vivo, remains unknown.


Assuntos
Bactérias/enzimologia , Peptidoglicano/química , Peptidoglicano/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Hidrólise , Cinética , Especificidade por Substrato
5.
FEMS Microbiol Lett ; 300(1): 42-7, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19758330

RESUMO

In Bacillus subtilis, the yoxA and dacC genes were proposed to form an operon. The yoxA gene was overexpressed in Escherichia coli and its product fused to a polyhistidine tag was purified. An aldose-1-epimerase or mutarotase activity was measured with the YoxA protein that we propose to rename as GalM by analogy with its counterpart in E. coli. The peptide D-Glu-delta-m-A(2)pm-D-Ala-m-A(2)pm-D-Ala mimicking the B. subtilis and E. coli interpeptide bridge was synthesized and incubated with the purified dacC product, the PBP4a. A clear dd-endopeptidase activity was obtained with this penicillin-binding protein, or PBP. The possible role of this class of PBP, present in almost all bacteria, is discussed.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Óperon , Bacillus subtilis/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Endopeptidases/genética , Endopeptidases/metabolismo , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/isolamento & purificação , Proteínas de Ligação às Penicilinas/metabolismo
6.
Biochem J ; 407(2): 293-302, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17635108

RESUMO

The psychrophilic cellulase, Cel5G, from the Antarctic bacterium Pseudoalteromonas haloplanktis is composed of a catalytic module (CM) joined to a carbohydrate-binding module (CBM) by an unusually long, extended and flexible linker region (LR) containing three loops closed by three disulfide bridges. To evaluate the possible role of this region in cold adaptation, the LR was sequentially shortened by protein engineering, successively deleting one and two loops of this module, whereas the last disulfide bridge was also suppressed by replacing the last two cysteine residue by two alanine residues. The kinetic and thermodynamic properties of the mutants were compared with those of the full-length enzyme, and also with those of the cold-adapted CM alone and with those of the homologous mesophilic enzyme, Cel5A, from Erwinia chrysanthemi. The thermostability of the mutated enzymes as well as their relative flexibility were evaluated by differential scanning calorimetry and fluorescence quenching respectively. The topology of the structure of the shortest mutant was determined by SAXS (small-angle X-ray scattering). The data indicate that the sequential shortening of the LR induces a regular decrease of the specific activity towards macromolecular substrates, reduces the relative flexibility and concomitantly increases the thermostability of the shortened enzymes. This demonstrates that the long LR of the full-length enzyme favours the catalytic efficiency at low and moderate temperatures by rendering the structure not only less compact, but also less stable, and plays a crucial role in the adaptation to cold of this cellulolytic enzyme.


Assuntos
Celulase/química , Celulase/fisiologia , Temperatura Baixa , Pseudoalteromonas/enzimologia , Aclimatação , Catálise , Celulase/genética , Estabilidade Enzimática , Mutação , Conformação Proteica
7.
J Mol Biol ; 371(2): 528-39, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17582436

RESUMO

The genome of Bacillus subtilis encodes 16 penicillin-binding proteins (PBPs) involved in the synthesis and/or remodelling of the peptidoglycan during the complex life cycle of this sporulating Gram-positive rod-shaped bacterium. PBP4a (encoded by the dacC gene) is a low-molecular mass PBP clearly exhibiting in vitro DD-carboxypeptidase activity. We have solved the crystal structure of this protein alone and in complex with a peptide (D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine) that mimics the C-terminal end of the Bacillus peptidoglycan stem peptide. PBP4a is composed of three domains: the penicillin-binding domain with a fold similar to the class A beta-lactamase structure and two domains inserted between the conserved motifs 1 and 2 characteristic of the penicillin-recognizing enzymes. The soaking of PBP4a in a solution of D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine resulted in an adduct between PBP4a and a D-alpha-aminopimelyl-epsilon-D-alanine dipeptide and an unbound D-alanine, i.e. the products of acylation of PBP4a by D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine with the release of a D-alanine. The adduct also reveals a binding pocket specific to the diaminopimelic acid, the third residue of the peptidoglycan stem pentapeptide of B. subtilis. This pocket is specific for this class of PBPs.


Assuntos
Bacillus subtilis/química , Bacillus subtilis/metabolismo , Materiais Biomiméticos/metabolismo , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Peptídeos/metabolismo , Peptidoglicano/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/genética , Materiais Biomiméticos/química , Cristalografia por Raios X , Lactamas/química , Lactamas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Ligação às Penicilinas/genética , Peptídeos/química , Peptidoglicano/química , Ligação Proteica , Estrutura Terciária de Proteína , Sensibilidade e Especificidade , Alinhamento de Sequência
8.
Anal Chim Acta ; 589(2): 159-65, 2007 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-17418176

RESUMO

The number of substances with beta-agonistic activity, illegally introduced in meat production or in sports doping as anabolic or beta-blocking agents is increasing. Analytical methods suited for their multianalyte detection are thus necessary. In this perspective, receptor assays were developed. The research activities undertaken in this study describe the solubilisation of a recombinant human beta(2)-adrenergic receptor produced in the inner membrane of genetically modified Escherichia coli, using the detergent n-dodecyl-beta-d-maltoside. Its potential to detect the presence of beta-agonists or beta-blockers in biological samples was evaluated. The solubilised beta(2)-adrenergic receptor retained its binding affinity in a radio-receptor assay based on the competition for the binding to receptors between a ligand (beta-agonist or antagonist) and the radioligand [(125)I]iodocyanopindolol. The IC(50) values ranged from 5+/-1 x 10(-8) M (clenbuterol) to 8+/-2 x 10(-6) M (isoxsuprine) for the beta-agonists tested and from 1.5+/-0.2 x 10(-10) M (carazolol) to 1.2+/-0.2 x 10(-5) M (metoprolol) for the beta-blockers tested. It was shown to have a lower limit of detection than a radio-receptor assay using the solubilised beta(2)-adrenoceptor expressed in a mammalian cell line. The solubilised recombinant human beta(2)-adrenoreceptor expressed in E. coli would be a useful tool to develop non radioactive multianalyte screening methods.


Assuntos
Agonistas Adrenérgicos beta/análise , Antagonistas Adrenérgicos beta/análise , Receptores Adrenérgicos beta 2/metabolismo , Animais , Escherichia coli/genética , Ligação Proteica , Receptores Adrenérgicos beta 2/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Padrões de Referência , Solubilidade
9.
J Biol Chem ; 280(35): 31249-56, 2005 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-15987687

RESUMO

Actinomadura sp. R39 produces an exocellular DD-peptidase/penicillin-binding protein (PBP) whose primary structure is similar to that of Escherichia coli PBP4. It is characterized by a high beta-lactam-binding activity (second order rate constant for the acylation of the active site serine by benzylpenicillin: k2/K = 300 mm(-1) s(-1)). The crystal structure of the DD-peptidase from Actinomadura R39 was solved at a resolution of 1.8 angstroms by single anomalous dispersion at the cobalt resonance wavelength. The structure is composed of three domains: a penicillin-binding domain similar to the penicillin-binding domain of E. coli PBP5 and two domains of unknown function. In most multimodular PBPs, additional domains are generally located at the C or N termini of the penicillin-binding domain. In R39, the other two domains are inserted in the penicillin-binding domain, between the SXXK and SXN motifs, in a manner similar to "Matryoshka dolls." One of these domains is composed of a five-stranded beta-sheet with two helices on one side, and the other domain is a double three-stranded beta-sheet inserted in the previous domain. Additionally, the 2.4-angstroms structure of the acyl-enzyme complex of R39 with nitrocefin reveals the absence of active site conformational change upon binding the beta-lactams.


Assuntos
Actinomycetales/química , Proteínas de Bactérias/química , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química , Proteínas de Bactérias/metabolismo , Cefalosporinas/química , Cefalosporinas/metabolismo , Cobalto/química , Cristalografia por Raios X , Indicadores e Reagentes/química , Indicadores e Reagentes/metabolismo , Modelos Moleculares , Penicilinas/química , Penicilinas/metabolismo , Estrutura Terciária de Proteína , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo
10.
J Bacteriol ; 186(13): 4412-6, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15205448

RESUMO

A soluble derivative of the Enterococcus faecalis JH2-2 class A PBP1 (*PBP1) was overproduced and purified. It exhibited a glycosyltransferase activity on the Escherichia coli 14C-labeled lipid II precursor. As a DD- peptidase, it could hydrolyze thiolester substrates with efficiencies similar to those of other class A penicillin-binding proteins (PBPs) and bind beta-lactams, but with k2/K (a parameter accounting for the acylation step efficiency) values characteristic of penicillin-resistant PBPs.


Assuntos
Proteínas de Bactérias , Proteínas de Transporte/genética , Enterococcus faecalis/genética , Genes Bacterianos , Proteínas de Ligação às Penicilinas , Antibacterianos/metabolismo , Sequência de Bases , Proteínas de Transporte/metabolismo , Glicosiltransferases/metabolismo , Cinética , Dados de Sequência Molecular
12.
Microbiology (Reading) ; 147(Pt 9): 2561-2569, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11535796

RESUMO

A penicillin-resistant mutant, JH2-2r (MIC 75 microg ml(-1)), was isolated from Enterococcus faecalis JH2-2 (MIC 5 microg ml(-1)) by successive passages on plates containing increasing concentrations of benzylpenicillin. A comparison of the penicillin-binding protein (PBP) profiles in the two strains revealed a more intensely labelled PBP4 in JH2-2r. Because the sequences of the JH2-2 and JH2-2r pbp4 genes were strictly identical, even in their promoter regions, this intensive labelling could only be associated with an overproduction of the low-affinity PBP4. No psr gene analogous to that proposed to act as a regulator of PBP5 synthesis in Enterococcus hirae and Enterococcus faecium could be identified in the vicinity of pbp4 in E. faecalis JH2-2 and JH2-2r. However, a psr-like gene distant from pbp4 was identified. The cloning and sequencing of that psr-like gene from both E. faecalis strains indicated that they were identical. It is therefore postulated that the PBP4 overproduction in E. faecalis JH2-2r results from the modification of an as yet unidentified factor.


Assuntos
Proteínas de Bactérias , Proteínas de Transporte/biossíntese , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/metabolismo , Hexosiltransferases , Muramilpentapeptídeo Carboxipeptidase/biossíntese , Resistência às Penicilinas/fisiologia , Peptidil Transferases , Sequência de Bases , Proteínas de Transporte/genética , Clonagem Molecular , DNA Bacteriano/genética , Enterococcus faecalis/genética , Enterococcus faecalis/patogenicidade , Escherichia coli/genética , Expressão Gênica , Genes Bacterianos , Humanos , Dados de Sequência Molecular , Muramilpentapeptídeo Carboxipeptidase/genética , Resistência às Penicilinas/genética , Proteínas de Ligação às Penicilinas , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...