Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Protoc ; 4(5): e1026, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38733265

RESUMO

Nuclear factor-κB (NF-κB) is a crucial pro-inflammatory transcription factor whose activation is of immense interest to immunology research. Estimation of NF-κB activation through flow cytometry is not possible due to the unavailability of robust flow cytometry antibodies that can bind to its phosphorylated, active, nuclear form. In this protocol, we describe a flow cytometry assay that measures the activation of the pro-inflammatory transcription factor NF-κB in stimulated immune cells by quantifying the degradation of its upstream regulator IκBα. We demonstrate the utility of this protocol by assessment of intracellular IκBα in human primary regulatory T cells experiencing TNFR2 agonism, a process previously reported to activate NF-κB in these cells. We also show that this assay may be applied to study NF-κB activation in other cell types, such as human primary T cells and THP-1 cell-derived macrophages, when induced by their corresponding inflammatory cues. Thus, this robust and reproducible protocol will be of interest to a wide range of scientists who aim to measure NF-κB activity in medium-to-high-throughput assays. © 2024 Wiley Periodicals LLC. Basic Protocol: Quantifying inflammatory activation by flow cytometry of IκBα degradation Support Protocol 1: Isolating and expanding human regulatory T cells Support Protocol 2: Calculating IC50 from flow cytometry data using Excel.


Assuntos
Citometria de Fluxo , Inibidor de NF-kappaB alfa , NF-kappa B , Humanos , Citometria de Fluxo/métodos , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Proteólise , Células THP-1 , Macrófagos/metabolismo , Macrófagos/imunologia
2.
J Immunol ; 207(12): 3070-3080, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34789557

RESUMO

IL-33 is a multifunctional cytokine that mediates local inflammation upon tissue damage. IL-33 is known to act on multiple cell types including group 2 innate lymphoid cells (ILC2s), Th2 cells, and mast cells to drive production of Th2 cytokines including IL-5 and IL-13. IL-33 signaling activity through transmembrane ST2L can be inhibited by soluble ST2 (sST2), which acts as a decoy receptor. Previous findings suggested that modulation of IL-13 levels in mice lacking decoy IL-13Rα2, or mice lacking IL-13, impacted responsiveness to IL-33. In this study, we used Il13 -/- mice to investigate whether IL-13 regulates IL-33 activity by modulating the transmembrane and soluble forms of ST2. In Il13 -/- mice, the effects of IL-33 administration were exacerbated relative to wild type (WT). Il13 -/- mice administered IL-33 i.p. had heightened splenomegaly, more immune cells in the peritoneum including an expanded ST2L+ ILC2 population, increased eosinophilia in the spleen and peritoneum, and reduced sST2 in the circulation and peritoneum. In the spleen, lung, and liver of mice given IL-33, gene expression of both isoforms of ST2 was increased in Il13 -/- mice relative to WT. We confirmed fibroblasts to be an IL-13-responsive cell type that can regulate IL-33 activity through production of sST2. This study elucidates the important regulatory activity that IL-13 exerts on IL-33 through induction of IL-33 decoy receptor sST2 and through modulation of ST2L+ ILC2s.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Animais , Citocinas , Imunidade Inata , Interleucina-13 , Linfócitos/metabolismo , Camundongos
3.
Skelet Muscle ; 4: 16, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161767

RESUMO

BACKGROUND: The idiopathic inflammatory myopathies represent a group of autoimmune diseases that are characterized by lymphocyte infiltration of muscle and muscle weakness. Insulin-like 6 (Insl6) is a poorly characterized member of the insulin-like/relaxin family of secreted proteins, whose expression is upregulated upon acute muscle injury. METHODS: In this study, we employed Insl6 gain or loss of function mice to investigate the role of Insl6 in a T cell-mediated model of experimental autoimmune myositis (EAM). EAM models in rodents have involved immunization with human myosin-binding protein C with complete Freund's adjuvant (CFA) emulsions and pertussis toxin. RESULTS: Insl6-deficiency in mice led to a worsened myositis phenotype including increased infiltration of CD4 and CD8 T cells and the elevated expression of inflammatory cytokines. Insl6-deficient mice show significant motor function impairment when tested with treadmill or Rotarod devices. Conversely, muscle-specific overexpression of Insl6 protected against the development of myositis as indicated by reduced lymphocyte infiltration in muscle, diminished inflammatory cytokine expression and improved motor function. The improvement in myositis by Insl6 could also be demonstrated by acute hydrodynamic delivery of a plasmid encoding murine Insl6. In cultured cells, Insl6 inhibits Jurkat cell proliferation and activation in response to phytohemagglutinin/phorbol 12-myristate 13-acetate stimulation. Insl6 transcript expression in muscle was reduced in a cohort of dermatomyositis and polymyositis patients. CONCLUSIONS: These data suggest that Insl6 may have utility for the treatment of myositis, a condition for which few treatment options exist.

4.
Circ Heart Fail ; 7(6): 976-85, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25149095

RESUMO

BACKGROUND: Despite the increasing prevalence of heart failure with preserved ejection fraction (HFpEF) in humans, there remains no therapeutic options for HFpEF. Adiponectin, an adipocyte-derived cytokine, exerts cardioprotective actions, and its deficiency is implicated in the development of hypertension and HF with reduced ejection fraction. Similarly, adiponectin deficiency in HFpEF exacerbates left ventricular hypertrophy, diastolic dysfunction, and HF. However, the therapeutic effects of adiponectin in HFpEF remain unknown. We sought to test the hypothesis that chronic adiponectin overexpression protects against the progression of HF in a murine model of HFpEF. METHODS AND RESULTS: Adiponectin transgenic and wild-type mice underwent uninephrectomy, a continuous saline or d-aldosterone infusion and given 1.0% sodium chloride drinking water for 4 weeks. Aldosterone-infused wild-type mice developed HFpEF with hypertension, left ventricular hypertrophy, and diastolic dysfunction. Aldosterone infusion increased myocardial oxidative stress and decreased sarcoplasmic reticulum Ca(2+)-ATPase protein expression in HFpEF. Although total phospholamban protein expression was unchanged, there was a decreased expression of protein kinase A-dependent phospholamban phosphorylation at Ser16 and CaMKII (Ca(2+)/calmodulin-dependent protein kinase II)-dependent phospholamban phosphorylation at Thr17. Adiponectin overexpression in aldosterone-infused mice ameliorated left ventricular hypertrophy, diastolic dysfunction, lung congestion, and myocardial oxidative stress without affecting blood pressure and left ventricular EF. This improvement in diastolic dysfunction parameters in aldosterone-infused adiponectin transgenic mice was accompanied by the preserved protein expression of protein kinase A-dependent phosphorylation of phospholamban at Ser16. Adiponectin replacement prevented the progression of aldosterone-induced HFpEF, independent of blood pressure, by improving diastolic dysfunction and by modulating cardiac hypertrophy. CONCLUSIONS: These findings suggest that adiponectin may have therapeutic effects in patients with HFpEF.


Assuntos
Adiponectina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Adiponectina/uso terapêutico , Aldosterona/farmacologia , Animais , Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Técnicas de Imagem por Elasticidade , Insuficiência Cardíaca/fisiopatologia , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/fisiologia
5.
J Biol Chem ; 289(23): 16200-13, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24742672

RESUMO

Adiponectin is a well described anti-inflammatory adipokine that is highly abundant in serum. Previous reports have found that adiponectin deficiency promotes cardiovascular and metabolic dysfunction in murine models, whereas its overexpression is protective. Two candidate adiponectin receptors, AdipoR1 and AdipoR2, are uncharacterized with regard to cardiovascular tissue homeostasis, and their in vivo metabolic functions remain controversial. Here we subjected AdipoR1- and AdipoR2-deficient mice to chronic hind limb ischemic surgery. Blood flow recovery in AdipoR1-deficient mice was similar to wild-type; however, revascularization in AdipoR2-deficient mice was severely attenuated. Treatment with adiponectin enhanced the recovery of wild-type mice but failed to rescue the impairment observed in AdipoR2-deficient mice. In view of this divergent receptor function in the hind limb ischemia model, AdipoR1- and AdipoR2-deficient mice were also evaluated in a model of diet-induced obesity. Strikingly, AdipoR1-deficient mice developed severe metabolic dysfunction compared with wild type, whereas AdipoR2-deficient mice were protected from diet-induced weight gain and metabolic perturbations. These data show that AdipoR2, but not AdipoR1, is functionally important in an in vivo model of ischemia-induced revascularization and that its expression is essential for the revascularization actions of adiponectin. These data also show that, in contrast to revascularization responses, AdipoR1, but not AdipoR2 deficiency, leads to diet-induced metabolic dysfunction, revealing that these receptors have highly divergent roles in vascular and metabolic homeostasis.


Assuntos
Doenças Metabólicas/fisiopatologia , Neovascularização Fisiológica , Receptores de Adiponectina/fisiologia , Animais , Extremidades/irrigação sanguínea , Camundongos , Camundongos Knockout
6.
Best Pract Res Clin Endocrinol Metab ; 28(1): 81-91, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24417948

RESUMO

Over the past two decades, adiponectin has been studied in more than eleven thousand publications. A classical adipokine, adiponectin was among the first factors secreted from adipose tissue that were found to promote metabolic function. Circulating levels of adiponectin consistently decline with increasing body mass index. Clinical and basic science studies have identified adiponectin's cardiovascular-protective actions, providing a mechanistic link to the increased incidence of cardiovascular disease in obese individuals. While progress has been made in identifying receptors essential for the metabolic actions of adiponectin (AdipoR1 and AdipoR2), few studies have examined the receptor-mediated signaling pathways in cardiovascular tissues. T-cadherin, a GPI-anchored adiponectin-binding protein, was recently identified as critical for the cardiac-protective and revascularization actions of adiponectin. Adiponectin is abundantly present on the surfaces of vascular and muscle tissues through a direct interaction with T-cadherin. Consistent with this observation, adiponectin is absent from T-cadherin-deficient tissues. Since T-cadherin lacks an intracellular domain, additional studies would further our understanding of this signaling pathway. Here, we review the diverse cardiometabolic actions of adiponectin.


Assuntos
Adiponectina/fisiologia , Coração/fisiologia , Adiponectina/genética , Animais , Caderinas/metabolismo , Cardiotônicos/farmacologia , Doenças Cardiovasculares/etiologia , Feminino , Humanos , Masculino , Camundongos , Obesidade/complicações , Obesidade/metabolismo , Receptores de Adiponectina/biossíntese , Receptores de Adiponectina/fisiologia
7.
J Biol Chem ; 288(34): 24886-97, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23824191

RESUMO

Adipose tissue secretes protein factors that have systemic actions on cardiovascular tissues. Previous studies have shown that ablation of the adipocyte-secreted protein adiponectin leads to endothelial dysfunction, whereas its overexpression promotes wound healing. However, the receptor(s) mediating the protective effects of adiponectin on the vasculature is not known. Here we examined the role of membrane protein T-cadherin, which localizes adiponectin to the vascular endothelium, in the revascularization response to chronic ischemia. T-cadherin-deficient mice were analyzed in a model of hind limb ischemia where blood flow is surgically disrupted in one limb and recovery is monitored over 28 days by laser Doppler perfusion imaging. In this model, T-cadherin-deficient mice phenocopy adiponectin-deficient mice such that both strains display an impaired blood flow recovery compared with wild-type controls. Delivery of exogenous adiponectin rescued the impaired revascularization phenotype in adiponectin-deficient mice but not in T-cadherin-deficient mice. In cultured endothelial cells, T-cadherin deficiency by siRNA knockdown prevented the ability of adiponectin to promote cellular migration and proliferation. These data highlight a previously unrecognized role for T-cadherin in limb revascularization and show that it is essential for mediating the vascular actions of adiponectin.


Assuntos
Adiponectina/metabolismo , Caderinas/metabolismo , Endotélio Vascular/metabolismo , Neovascularização Fisiológica/fisiologia , Adiponectina/genética , Animais , Caderinas/genética , Técnicas de Silenciamento de Genes , Membro Posterior/irrigação sanguínea , Isquemia/genética , Isquemia/metabolismo , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...