Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Chem ; 6(10): 681-704, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37117494

RESUMO

Molecular junctions are building blocks for constructing future nanoelectronic devices that enable the investigation of a broad range of electronic transport properties within nanoscale regions. Crossing both the nanoscopic and mesoscopic length scales, plasmonics lies at the intersection of the macroscopic photonics and nanoelectronics, owing to their capability of confining light to dimensions far below the diffraction limit. Research activities on plasmonic phenomena in molecular electronics started around 2010, and feedback between plasmons and molecular junctions has increased over the past years. These efforts can provide new insights into the near-field interaction and the corresponding tunability in properties, as well as resultant plasmon-based molecular devices. This Review presents the latest advancements of plasmonic resonances in molecular junctions and details the progress in plasmon excitation and plasmon coupling. We also highlight emerging experimental approaches to unravel the mechanisms behind the various types of light-matter interactions at molecular length scales, where quantum effects come into play. Finally, we discuss the potential of these plasmonic-electronic hybrid systems across various future applications, including sensing, photocatalysis, molecular trapping and active control of molecular switches.

2.
Adv Mater ; 30(6)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29266512

RESUMO

Photodetectors with broadband detection capability are desirable for sensing applications in the coming age of the internet-of-things. Although 2D layered materials (2DMs) have been actively pursued due to their unique optical properties, by far only graphene and black arsenic phosphorus have the wide absorption spectrum that covers most molecular vibrational fingerprints. However, their reported responsivity and response time are falling short of the requirements needed for enabling simultaneous weak-signal and high-speed detections. Here, a novel 2DM, black phosphorous carbide (b-PC) with a wide absorption spectrum up to 8000 nm is synthesized and a b-PC phototransistor with a tunable responsivity and response time at an excitation wavelength of 2004 nm is demonstrated. The b-PC phototransistor achieves a peak responsivity of 2163 A W-1 and a shot noise equivalent power of 1.3 fW Hz-1/2 at 2004 nm. In addition, it is shown that a response time of 0.7 ns is tunable by the gating effect, which renders it versatile for high-speed applications. Under the same signal strength (i.e., excitation power), its performance in responsivity and detectivity in room temperature condition is currently ahead of recent top-performing photodetectors based on 2DMs that operate with a small bias voltage of 0.2 V.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...