Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 16(17): 12905-18, 2008 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-18711530

RESUMO

The biogeochemical characterization of marine particles suspended in sea water, is of fundamental importance in many areas of ocean science. Previous studies based on theoretical calculations and field measurements have demonstrated the importance of the use of the polarized light field in the retrieval of the suspended marine particles properties. However, because of the weakness of the water leaving polarized signal and of the limited number of appropriate spatial sensors, such measurements have never been exploited from space. Here we show that the marine polarized remote sensing reflectance, as detected from the POLarization and Directionality of the Earth's Reflectances (POLDER) sensor, can be measured from space over bright waters and in absence of aerosols. This feasibility study is carried out over two oceanic areas characterized by different nature of the bulk particulate assemblage: the Barents sea during an intense coccolithophore bloom, and the Rio de la Plata estuary waters dominated by suspended sediments. The retrieved absolute values of the degree of polarization, P, its angular pattern, and its behavior with the scattering level are consistent with theory and field measurements. Radiative transfer simulations confirm the sensitivity of the POLDER-2 P values to the nature of the particulate assemblage. These preliminary results are very promising for the assessment of the bulk particle composition from remote sensing of the polarized signal, at least over highly scattering waters.


Assuntos
Monitoramento Ambiental/métodos , Modelos Teóricos , Fotometria/métodos , Refratometria/métodos , Astronave , Água/química , Simulação por Computador , Luz , Oceanos e Mares , Espalhamento de Radiação
2.
Appl Opt ; 46(7): 1107-19, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17304309

RESUMO

The vertical distribution of absorbing aerosols affects the reflectance of the ocean-atmosphere system. The effect, due to the coupling between molecular scattering and aerosol absorption, is important in the visible, especially in the blue, where molecular scattering is effective, and becomes negligible in the near infrared. It increases with increasing Sun and view zenith angles and aerosol optical thickness and with decreasing scattering albedo but is practically independent of wind speed. Relative differences between the top of the atmosphere reflectance simulated with distinct vertical distributions may reach approximately 10% or even 20%, depending on aerosol absorption. In atmospheric correction algorithms, the differences are directly translated into errors on the retrieved water reflectance. These errors may reach values well above the 5x10(-4) requirement in the blue, even for small aerosol optical thickness, preventing accurate retrieval of chlorophyll-a [Chl-a] concentration. Estimating aerosol scale height or altitude from measurements in the oxygen A band, possible with the polarization and directionality of the Earth's reflectance instrument and medium resolution imaging spectrometer, is expected to improve significantly the accuracy of the water reflectance retrievals and yield acceptable [Chl-a] concentration estimates in the presence of absorbing aerosols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...