Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reg Anesth Pain Med ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813527

RESUMO

INTRODUCTION: Low back pain is a significant burden to society and the lack of reliable outcome measures, combined with a prevailing inability to quantify the biopsychosocial elements implicated in the disease, impedes clinical decision-making and distorts treatment efficacy. This paper aims to validate the utility of a biopsychosocial spine platform to provide standardized wearable sensor-derived functional motion assessments to assess spine function and differentiate between healthy controls and patients. Secondarily, we explored the correlation between these motion features and subjective biopsychosocial measures. METHODS: An observational study was conducted on healthy controls (n=50) and patients with low back pain (n=50) to validate platform utility. The platform was used to conduct functional assessments along with patient-reported outcome assessments to holistically document cohort differences. Our primary outcomes were motion features; and our secondary outcomes were biopsychosocial measures (pain, function, etc). RESULTS: Our results demonstrated statistically significant differences in motion features between healthy and patient cohorts across anatomical planes. Importantly, we found velocity and acceleration in the axial plane showed the largest difference, with healthy controls having 49.7% and 55.7% higher values, respectively, than patients. In addition, we found significant correlations between motion features and biopsychosocial measures for pain, physical function and social role only. CONCLUSIONS: Our study validated the use of wearable sensor-derived functional motion metrics in differentiating healthy controls and patients. Collectively, this technology has the potential to facilitate holistic biopsychosocial evaluations to enhance spine care and improve patient outcomes. TRIAL REGISTRATION NUMBER: NCT05776771.

2.
Heliyon ; 9(3): e14413, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36967955

RESUMO

Background: Motion Sickness increases risk of performance deficits and safety of flight concerns. The etiology of motion sickness is poorly understood. Here, we attempted to quantify the physiological effects of motion sickness on static balance and determine the genetic predictors associated with these effects. Methods: 16 subjects underwent a disorientation stimulus to induce motion sickness. Motion sickness susceptibility was identified using the Motion Sickness Susceptibility Questionnaire. Postural balance outcomes were measured using two tasks, and small ribonucleic acid profiles were assessed with blood draws before motion sickness stimulus. Differences in postural sway before and after the stimulus as well as effect modification of susceptibility were assessed. A random forest followed by regression tree analysis was constructed for each postural sway variable to determine top genetic and covariate predictors. Findings: Significant differences existed in mean postural balance responses between before and after stimulus. Individuals with longer stimulus survival experienced a greater (but insignificant) perception of sway, even if not displaying increased sway for all conditions. Circulation small ribonucleic acids were differentially expressed between individuals with long and short stimulus survival, many of these microRNA have purported targets in genes related to vestibular disorders. Interpretation: We found motion sickness produces transient motor dysfunction in a healthy military population. Small ribonucleic acids were differentially expressed between subjects with long and short stimulus survival times.

3.
Sensors (Basel) ; 23(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36772486

RESUMO

Neck pain is a common cause of disability worldwide. Lack of objective tools to quantify an individual's functional disability results in the widespread use of subjective assessments to measure the limitations in spine function and the response to interventions. This study assessed the reliability of the quantifying neck function using a wearable cervical motion tracking system. Three novice raters recorded the neck motion assessments on 20 volunteers using the device. Kinematic features from the signals in all three anatomical planes were extracted and used as inputs to repeated measures and mixed-effects regression models to calculate the intraclass correlation coefficients (ICCs). Cervical spine-specific kinematic features indicated good and excellent inter-rater and intra-rater reliability for the most part. For intra-rater reliability, the ICC values varied from 0.85 to 0.95, and for inter-rater reliability, they ranged from 0.7 to 0.89. Overall, velocity measures proved to be more reliable compared to other kinematic features. This technique is a trustworthy tool for evaluating neck function objectively. This study showed the potential for cervical spine-specific kinematic measurements to deliver repeatable and reliable metrics to evaluate clinical performance at any time points.


Assuntos
Vértebras Cervicais , Dispositivos Eletrônicos Vestíveis , Humanos , Reprodutibilidade dos Testes , Cervicalgia/diagnóstico
4.
Pain Med ; 24(Suppl 1): S3-S12, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-36622041

RESUMO

In 2019, the National Health Interview survey found that nearly 59% of adults reported pain some, most, or every day in the past 3 months, with 39% reporting back pain, making back pain the most prevalent source of pain, and a significant issue among adults. Often, identifying a direct, treatable cause for back pain is challenging, especially as it is often attributed to complex, multifaceted issues involving biological, psychological, and social components. Due to the difficulty in treating the true cause of chronic low back pain (cLBP), an over-reliance on opioid pain medications among cLBP patients has developed, which is associated with increased prevalence of opioid use disorder and increased risk of death. To combat the rise of opioid-related deaths, the National Institutes of Health (NIH) initiated the Helping to End Addiction Long-TermSM (HEAL) initiative, whose goal is to address the causes and treatment of opioid use disorder while also seeking to better understand, diagnose, and treat chronic pain. The NIH Back Pain Consortium (BACPAC) Research Program, a network of 14 funded entities, was launched as a part of the HEAL initiative to help address limitations surrounding the diagnosis and treatment of cLBP. This paper provides an overview of the BACPAC research program's goals and overall structure, and describes the harmonization efforts across the consortium, define its research agenda, and develop a collaborative project which utilizes the strengths of the network. The purpose of this paper is to serve as a blueprint for other consortia tasked with the advancement of pain related science.


Assuntos
Dor Crônica , Dor Lombar , Transtornos Relacionados ao Uso de Opioides , Adulto , Humanos , Projetos de Pesquisa , Analgésicos Opioides/uso terapêutico , Comitês Consultivos , Medição da Dor/métodos , Dor Crônica/epidemiologia , Dor Lombar/diagnóstico , Dor Lombar/terapia , Transtornos Relacionados ao Uso de Opioides/epidemiologia , Transtornos Relacionados ao Uso de Opioides/terapia
5.
Clin Biomech (Bristol, Avon) ; 96: 105671, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35594783

RESUMO

BACKGROUND: Motion sickness and low back disorders are prevalent and debilitating conditions that affect the health, performance, and operational effectiveness of military aircrews. This study explored the effects of a motion sickness stimulus on biomechanical and genetic factors that could potentially be involved in the causal pathways for both disorders. METHODS: Subjects recruited from a military population were exposed to either a mild (n = 12) or aggressive (n = 16) motion sickness stimulus in a Neuro-Otologic Test Center. The independent variable of interest was the motion sickness stimulus exposure (before vs. after), though differences between mild and aggressive stimuli were also assessed. Dependent measures for the study included motion sickness exposure duration, biomechanical variables (postural stability, gait function, low back function, lumbar spine loading), and gene expression. FINDINGS: Seven of twelve subjects experiencing the mild motion sickness stimulus endured the full 30 min in the NOTC, whereas subjects lasted an average of 13.2 (SD 5.0) minutes in the NOTC with the aggressive motion sickness stimulus. Mild motion sickness exposure led to a significant decrease in the postural stability measure of sway area, though the aggressive motion sickness exposure led to a statistically significant increase in sway area. Both stimuli led to decreases in low back function, though the decrease was only statistically significant for the mild protocol. Both stimuli also led to significant changes in gene expression. INTERPRETATION: Motion sickness may alter standing balance, decrease low back function, and lead to changes in the expression of genes with roles in osteogenesis, myogenesis, development of brain lymphatics, inflammation, neuropathic pain, and more. These results may provide preliminary evidence for a link between motion sickness and low back disorders.


Assuntos
Militares , Enjoo devido ao Movimento , Expressão Gênica , Humanos , Enjoo devido ao Movimento/etiologia , Equilíbrio Postural , Posição Ortostática
6.
Adv Complement Altern Med ; 7(2): 672-683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36816092

RESUMO

Background: Low back pain is the leading cause of disability worldwide. Subjective assessments are often used to assess extent of functional limitations and treatment response. However, these measures have poor sensitivity and are influenced by the patient's perception of their condition. Currently, there are no objective tools to effectively assess the extent of an individual's functional disability and inform clinical decision-making. Objective: The purpose of this study was to evaluate the reliability of a wearable motion system based on Inertial Measurement Unit (IMU) sensors for use in quantifying low back function. Methods: Low back motion assessments were conducted by 3 novice raters on 20 participants using an IMU-based motion system. These assessments were conducted over 3 days with 2 days of rest in between tests. A total of 37 kinematic parameters were extracted from the low back motion assessment in all three anatomical planes. Intra-rater and inter-rater reliability were assessed using Intraclass Correlation Coefficients (ICCs) calculated from repeated measures, mixed-effects regression models. Results: Lumbar spine-specific kinematic parameters showed moderate to excellent reliability across all kinematic parameters. The ICC values ranged between 0.84-0.93 for intra-rater reliability and 0.66 - 0.83 for inter-rater reliability. In particular, velocity measures showed higher reliabilities than other kinematic variables. Conclusion: The IMU-based wearable motion system is a valid and reliable tool to objectively assess low back function. This study demonstrated that lumbar spine-specific kinematic metrics have the potential to provide good, repeatable metrics to assess clinical function over time.

7.
Int J Neurosci ; 132(5): 511-520, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-32942932

RESUMO

STUDY DESIGN: Observational Study. OBJECTIVE: The primary objective was to determine if there were differences in spine structure measures between experimental postures and standard supine posture MRIs. METHODS: Thirty-four low back pain patients were included. MRI was taken in 6 experimental postures. The dependent measures includes sagittal view anterior (ADH), middle and posterior disc heights, thecal sac width, left/right foraminal height (FH). In the axial view: disc width, left and right foraminal height. Measures were done L3/L4, L4/L5 and L5/S1. Each subject served as their own control. Spine measurements in the experimental posture were compared to the same measures in the standard supine posture. RESULTS: 94% inter-observer reliability was seen. In the sagittal and axial view, 55 of the 108 and 11 of the 18 measures were significantly different. In sagittal view: a) ADH was significantly smaller in the sitting flexed posture by 2.50 mm ± 0.63 compared to the supine posture; b) ADH in sitting neutral posture was significantly smaller than the standard posture by 1.97 mm ± 0.86; c) sitting flexed posture showed that bilateral FH measures were significantly different; d) Bilateral FH was larger in the sitting neutral posture compared to the standard supine posture by 0.87 mm ± 0.17. CONCLUSIONS: This research quantifies the differences in spine structure measures that occur in various experimental postures. The additional information gathered from an upright MRI may correlate with symptoms leading to an accurate diagnosis and assist in future spine research.


Assuntos
Dor Lombar , Humanos , Dor Lombar/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Postura , Reprodutibilidade dos Testes
8.
J Appl Biomech ; 37(3): 196-203, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33690164

RESUMO

The objective of this study was to test the feasibility of using a pair of wearable inertial measurement unit (IMU) sensors to accurately capture dynamic joint motion data during simulated occupational conditions. Eleven subjects (5 males and 6 females) performed repetitive neck, low-back, and shoulder motions simulating low- and high-difficulty occupational tasks in a laboratory setting. Kinematics for each of the 3 joints were measured via IMU sensors in addition to a "gold standard" passive marker optical motion capture system. The IMU accuracy was benchmarked relative to the optical motion capture system, and IMU sensitivity to low- and high-difficulty tasks was evaluated. The accuracy of the IMU sensors was found to be very good on average, but significant positional drift was observed in some trials. In addition, IMU measurements were shown to be sensitive to differences in task difficulty in all 3 joints (P < .05). These results demonstrate the feasibility for using wearable IMU sensors to capture kinematic exposures as potential indicators of occupational injury risk. Velocities and accelerations demonstrate the most potential for developing risk metrics since they are sensitive to task difficulty and less sensitive to drift than rotational position measurements.


Assuntos
Aceleração , Ombro , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Movimento (Física) , Amplitude de Movimento Articular
9.
Clin Biomech (Bristol, Avon) ; 80: 105169, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32919360

RESUMO

BACKGROUND: In spite of the prevalence of occupational neck disorders as a result of work force fluctuating from industry to sedentary office work, most cervical spine computational models are not capable of simulating occupational and daily living activities whereas majority of cervical spine models specialized to simulate crash and impact scenarios. Therefore, estimating spine tissue loads accurately to quantify the risk of neck disorders in occupational environments within those models is not possible due to the lack of muscle models, dynamic simulation and passive spine structures. METHODS: In this effort the structure, logic, and validation process of an electromyography-assisted cervical biomechanical model that is capable of estimating neck loading under three-dimensional complex motions is described. The developed model was designed to simulate complex dynamic motions similar to work place exposure. Curved muscle geometry, personalized muscle force parameters, and separate passive and (electromyography-driven) active muscle force components are implemented in this model. FINDINGS: Calibration algorithms were able to reverse-engineer personalized muscle properties to calculate active and passive muscle forces of each individual. INTERPRETATION: This electromyography-assisted cervical spine model with curved muscle model is capable to accurately predict spinal tissue loads during isometric and dynamic head and neck activities. Personalized active and passive muscle force algorithms will help to more robustly investigate person-specific muscle forces and spinal tissue loads.


Assuntos
Vértebras Cervicais/fisiologia , Eletromiografia , Fenômenos Mecânicos , Modelos Biológicos , Fenômenos Biomecânicos , Humanos , Masculino , Músculo Esquelético/fisiologia
10.
Ergonomics ; 63(4): 505-521, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32024437

RESUMO

The objectives of this study were to quantify loads imposed upon the lumbar spine while lifting/lowering with one versus two hands and to create guidelines for one-handed lifting/lowering that are protective of the lower back. Thirty subjects (15 male, 15 female) performed one- and two-handed exertions in a laboratory, lifting from/lowering to 18 lift origins/destinations using medicine balls of varying masses. An electromyography-assisted model predicted peak spinal loads, which were related to tissue tolerance limits to create recommended weight limits. Compared to two-handed exertions, one-handed exertions resulted in decreased spinal compression and A/P shear loading (p < 0.001) but increased lateral shear (p < 0.001). Effects were likely driven by altered moment exposures attributable to altered torso kinematics. Differences between spinal loads for one- versus two-handed exertions were influenced by asymmetry (p < 0.001) and amplified at lower lift origin/destination heights, lower object masses and larger horizontal distances between the body and the load (p < 0.001). Practitioner summary: A biomechanical model was utilised to compare spinal loading for one versus two-handed lifting/lowering. Spinal loads in compression and A/P shear were reduced for one-handed relative to two-handed exertions. As current lifting guidelines cannot appropriately be applied to one-handed scenarios, one-handed weight limits protecting the lower back are presented herein. Abbreviations: LBD: low back disorder, EMG: electromyography, A/P: anterior/posterior, MVC: maximum voluntary contraction.


Assuntos
Mãos , Remoção , Dor Lombar/prevenção & controle , Vértebras Lombares/fisiologia , Doenças Musculoesqueléticas/prevenção & controle , Postura , Adulto , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Masculino , Análise e Desempenho de Tarefas
11.
Appl Ergon ; 84: 103021, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31987509

RESUMO

The objective of this study was to investigate biomechanical loads on the lumbar spine as a function of working in a confined vertical space, consistent with baggage handling inside the baggage compartment of an airplane. Ten male subjects performed baggage handling tasks using confined (kneeling, sitting) and unconfined (stooping) lifting styles. Dependent measures of torso flexion and three-dimensional spinal loads were assessed with an electromyography-driven biomechanical model. Lifting exertions typical to airline baggage handling posed significant risk to the lumbar spine, regardless of lifting style. Statistically significant differences attributable to lift style (stooping, kneeling, sitting) were not observed for peak compressive, lateral shear, or resultant spinal loads, but lifting while kneeling decreased anterior/posterior (A/P) shear spinal loads relative to stooping (p = 0.02). Collectively, kneeling offers the greatest benefit when lifting in confined spaces because of the ability to keep the torso upright, subsequently reducing shear forces on the lumbar spine.


Assuntos
Espaços Confinados , Vértebras Lombares/fisiologia , Postura/fisiologia , Levantamento de Peso , Adulto , Aeronaves , Fenômenos Biomecânicos , Eletromiografia , Humanos , Masculino , Esforço Físico/fisiologia
12.
Appl Ergon ; 75: 1-7, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30509514

RESUMO

This study evaluated loading on the low back while wearing two commercially available postural assist exoskeletons. Ten male subjects lifted a box from multiple lift origins (combinations of vertical height and asymmetry) to a common destination using a squatting lifting technique with and without the use of either exoskeleton. Dependent measures included subject kinematics, moment arms between the torso or weight being lifted and the lumbar spine, and spinal loads as predicted by an electromyography-driven spine model. One of the exoskeletons tested (StrongArm Technologies™ FLx) reduced peak torso flexion at the shin lift origin, but differences in moment arms or spinal loads attributable to either of the interventions were not observed. Thus, industrial exoskeletons designed to control posture may not be beneficial in reducing biomechanical loads on the lumbar spine. Interventions altering the external manual materials handling environment (lift origin, load weight) may be more appropriate when implementation is fesible.


Assuntos
Exoesqueleto Energizado , Remoção , Vértebras Lombares/fisiologia , Postura , Suporte de Carga/fisiologia , Adulto , Fenômenos Biomecânicos , Humanos , Masculino , Amplitude de Movimento Articular
13.
Appl Ergon ; 70: 247-252, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29866315

RESUMO

Information on spinal loading for using lift assist systems for airport baggage handling is lacking. We conducted a laboratory study to evaluate a vacuum lift system for reducing lumbar spinal loads during baggage loading/unloading tasks. Ten subjects performed the tasks using the industry average baggage weight of 14.5 kg on a typical two-shelved baggage cart with or without using the lift system (i.e. lifting technique). Repeated measures analysis of variance (2 tasks × 2 shelf heights x 2 techniques) was used. Spinal loads were estimated by an electromyography-driven biomechanical model. On average, the vacuum lift system reduced spinal compressive forces on the lumbar spine by 39% and below the 3400 N damage threshold. The system also resulted in a 25% reduction in the anterior-posterior shear force at the L5/S1 inferior endplate level. This study provides evidence for the potential to reduce spinal loads when using a vacuum lift system.


Assuntos
Aviação , Músculos do Dorso/fisiologia , Remoção , Vértebras Lombares/fisiologia , Saúde Ocupacional , Suporte de Carga , Adulto , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Remoção/efeitos adversos , Masculino , Doenças Musculoesqueléticas/etiologia , Doenças Musculoesqueléticas/prevenção & controle , Análise e Desempenho de Tarefas , Vácuo , Adulto Jovem
14.
Ergonomics ; 61(6): 853-865, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29241415

RESUMO

Though biomechanically determined guidelines exist for lifting, existing recommendations for pushing and pulling were developed using a psychophysical approach. The current study aimed to establish objective hand force limits based on the results of a biomechanical assessment of the forces on the lumbar spine during occupational pushing and pulling activities. Sixty-two subjects performed pushing and pulling tasks in a laboratory setting. An electromyography-assisted biomechanical model estimated spinal loads, while hand force and turning torque were measured via hand transducers. Mixed modelling techniques correlated spinal load with hand force or torque throughout a wide range of exposures in order to develop biomechanically determined hand force and torque limits. Exertion type, exertion direction, handle height and their interactions significantly influenced dependent measures of spinal load, hand force and turning torque. The biomechanically determined guidelines presented herein are up to 30% lower than comparable psychophysically derived limits and particularly more protective for straight pushing. Practitioner Summary: This study utilises a biomechanical model to develop objective biomechanically determined push/pull risk limits assessed via hand forces and turning torque. These limits can be up to 30% lower than existing psychophysically determined pushing and pulling recommendations. Practitioners should consider implementing these guidelines in both risk assessment and workplace design moving forward.


Assuntos
Mãos/fisiologia , Vértebras Lombares/fisiologia , Análise e Desempenho de Tarefas , Suporte de Carga/fisiologia , Trabalho/fisiologia , Adulto , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Região Lombossacral/fisiologia , Masculino , Músculo Esquelético/fisiologia , Doenças Musculoesqueléticas/etiologia , Doenças Profissionais/etiologia , Esforço Físico/fisiologia , Fatores de Proteção , Torque , Adulto Jovem
15.
Clin Biomech (Bristol, Avon) ; 46: 23-32, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28500909

RESUMO

BACKGROUND: Many methods exist to describe coactivation between muscles. However, most methods have limited capability in the assessment of coactivation during complex dynamic tasks for multi-muscle systems such as the lumbar spine. The ability to assess coactivation is important for the understanding of neuromuscular inefficiency. In the context of this manuscript, inefficiency is defined as the effort or level of coactivation beyond what may be necessary to accomplish a task (e.g., muscle guarding during postural stabilization). The objectives of this study were to describe the development of an index to assess coactivity for the lumbar spine and test its ability to differentiate between various complex dynamic tasks. METHODS: The development of the coactivation index involved the continuous agonist/antagonist classification of moment contributions for the power-producing muscles of the torso. Different tasks were employed to test the range of the index including lifting, pushing, and Valsalva. FINDINGS: The index appeared to be sensitive to conditions where higher coactivation would be expected. These conditions of higher coactivation included tasks involving higher degrees of control. Precision placement tasks required about 20% more coactivation than tasks not requiring precision, lifting at chest height required approximately twice the coactivation as mid-thigh height, and pushing fast speeds with turning also required at least twice the level of coactivity as slow or preferred speeds. INTERPRETATION: Overall, this novel coactivation index could be utilized to describe the neuromuscular effort in the lumbar spine for tasks requiring different degrees of postural control.


Assuntos
Vértebras Lombares/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Equilíbrio Postural/fisiologia , Adulto , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Região Lombossacral , Masculino , Amplitude de Movimento Articular/fisiologia
16.
J Biomech ; 58: 237-240, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28549599

RESUMO

Optical motion capture is commonly used in biomechanics to measure human kinematics. However, no studies have yet examined the accuracy of optical motion capture in a large capture volume (>100m3), or how accuracy varies from the center to the extreme edges of the capture volume. This study measured the dynamic 3D errors of an optical motion capture system composed of 42 OptiTrack Prime 41 cameras (capture volume of 135m3) by comparing the motion of a single marker to the motion reported by a ThorLabs linear motion stage. After spline interpolating the data, it was found that 97% of the capture area had error below 200µm. When the same analysis was performed using only half (21) of the cameras, 91% of the capture area was below 200µm of error. The only locations that exceeded this threshold were at the extreme edges of the capture area, and no location had a mean error exceeding 1mm. When measuring human kinematics with skin-mounted markers, uncertainty of marker placement relative to underlying skeletal features and soft tissue artifact produce errors that are orders of magnitude larger than the errors attributed to the camera system itself. Therefore, the accuracy of this OptiTrack optical motion capture system was found to be more than sufficient for measuring full-body human kinematics with skin-mounted markers in a large capture volume (>100m3).


Assuntos
Movimento (Física) , Fotografação/instrumentação , Artefatos , Fenômenos Biomecânicos , Humanos , Fenômenos Ópticos
17.
J Electromyogr Kinesiol ; 33: 1-9, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28107658

RESUMO

Previous curved muscle models have typically examined their robustness only under simple, single-plane static exertions. In addition, the empirical validation of curved muscle models through an entire lumbar spine has not been fully realized. The objective of this study was to empirically validate a personalized biologically-assisted curved muscle model during complex dynamic exertions. Twelve subjects performed a variety of complex lifting tasks as a function of load weight, load origin, and load height. Both a personalized curved muscle model as well as a straight-line muscle model were used to evaluate the model's fidelity and prediction of three-dimensional spine tissue loads under different lifting conditions. The curved muscle model showed better model performance and different spinal loading patterns through an entire lumbar spine compared to the straight-line muscle model. The curved muscle model generally showed good fidelity regardless of lifting condition. The majority of the 600 lifting tasks resulted in a coefficient of determination (R2) greater than 0.8 with an average of 0.83, and the average absolute error less than 15% between measured and predicted dynamic spinal moments. As expected, increased load and asymmetry were generally found to significantly increase spinal loads, demonstrating the ability of the model to differentiate between experimental conditions. A curved muscle model would be useful to estimate precise spine tissue loads under realistic circumstances. This precise assessment tool could aid in understanding biomechanical causal pathways for low back pain.


Assuntos
Vértebras Lombares/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Esforço Físico , Suporte de Carga/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino
18.
Ergonomics ; 60(4): 577-588, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27189654

RESUMO

Early biomechanical spine models represented the trunk muscles as straight-line approximations. Later models have endeavoured to accurately represent muscle curvature around the torso. However, only a few studies have systematically examined various techniques and the logic underlying curved muscle models. The objective of this review was to systematically categorise curved muscle representation techniques and compare the underlying logic in biomechanical models of the spine. Thirty-five studies met our selection criteria. The most common technique of curved muscle path was the 'via-point' method. Curved muscle geometry was commonly developed from MRI/CT database and cadaveric dissections, and optimisation/inverse dynamics models were typically used to estimate muscle forces. Several models have attempted to validate their results by comparing their approach with previous studies, but it could not validate of specific tasks. For future needs, personalised muscle geometry, and person- or task-specific validation of curved muscle models would be necessary to improve model fidelity. Practitioner Summary: The logic underlying the curved muscle representations in spine models is still poorly understood. This literature review systematically categorised different approaches and evaluated their underlying logic. The findings could direct future development of curved muscle models to have a better understanding of the biomechanical causal pathways of spine disorders.


Assuntos
Músculos do Dorso/anatomia & histologia , Modelos Anatômicos , Fenômenos Biomecânicos , Humanos , Tronco/anatomia & histologia
19.
Clin Biomech (Bristol, Avon) ; 37: 153-159, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27484459

RESUMO

BACKGROUND: Biomechanical models have been developed to predict spinal loads in vivo to assess potential risk of injury in workplaces. Most models represent trunk muscles with straight-lines. Even though straight-line muscles behave reasonably well in simple exertions, they could be less reliable during complex dynamic exertions. A curved muscle representation was developed to overcome this issue. However, most curved muscle models have not been validated during dynamic exertions. Thus, the objective of this study was to investigate the fidelity of a curved muscle model during complex dynamic lifting tasks, and to investigate the changes in spine tissue loads. METHODS: Twelve subjects (7 males and 5 females) participated in this study. Subjects performed lifting tasks as a function of load weight, load origin, and load height to simulate complex exertions. Moment matching measures were recorded to evaluate how well the model predicted spinal moments compared to measured spinal moments from T12/L1 to L5/S1 levels. FINDINGS: The biologically-assisted curved muscle model demonstrated better model performance than the straight-line muscle model between various experimental conditions. In general, the curved muscle model predicted at least 80% of the variability in spinal moments, and less than 15% of average absolute error across levels. The model predicted that the compression and anterior-posterior shear load significantly increased as trunk flexion increased, whereas the lateral shear load significantly increased as trunk twisted more asymmetric during lifting tasks. INTERPRETATION: A curved muscle representation in a biologically-assisted model is an empirically reasonable approach to accurately predict spinal moments and spinal tissue loads of the lumbar spine.


Assuntos
Vértebras Lombares/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Coluna Vertebral/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Modelos Anatômicos , Análise e Desempenho de Tarefas , Tronco/fisiologia
20.
Clin Biomech (Bristol, Avon) ; 37: 53-59, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27323286

RESUMO

BACKGROUND: Biomechanical models have been developed to assess the spine tissue loads of individuals. However, most models have assumed trunk muscle lines of action as straight-lines, which might be less reliable during occupational tasks that require complex lumbar motions. The objective of this study was to describe the model structure and underlying logic of a biologically-assisted curved muscle model of the lumbar spine. METHODS: The developed model structure including curved muscle geometry, separation of active and passive muscle forces, and personalization of muscle properties was described. An example of the model procedure including data collection, personalization, and data evaluation was also illustrated. FINDINGS: Three-dimensional curved muscle geometry was developed based on a predictive model using magnetic resonance imaging and anthropometric measures to personalize the model for each individual. Calibration algorithms were able to reverse-engineer personalized muscle properties to calculate active and passive muscle forces of each individual. INTERPRETATION: This biologically-assisted curved muscle model will significantly increase the accuracy of spinal tissue load predictions for the entire lumbar spine during complex dynamic occupational tasks. Personalized active and passive muscle force algorithms will help to more robustly investigate person-specific muscle forces and spinal tissue loads.


Assuntos
Vértebras Lombares/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Suporte de Carga/fisiologia , Algoritmos , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Região Lombossacral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...