Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 158(2): 024101, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641405

RESUMO

Hydrocarbon pyrolysis is a complex process involving large numbers of chemical species and types of chemical reactions. Its quantitative description is important for planetary sciences, in particular, for understanding the processes occurring in the interior of icy planets, such as Uranus and Neptune, where small hydrocarbons are subjected to high temperature and pressure. We propose a computationally cheap methodology based on an originally developed ten-reaction model and the configurational model from random graph theory. This methodology generates accurate predictions for molecule size distributions for a variety of initial chemical compositions and temperatures ranging from 3200 to 5000 K. Specifically, we show that the size distribution of small molecules is particularly well predicted, and the size of the largest molecule can be accurately predicted provided that this molecule is not too large.

2.
J Chem Theory Comput ; 18(12): 7496-7509, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36399110

RESUMO

We develop a method to construct temperature-dependent kinetic models of hydrocarbon pyrolysis, based on information from molecular dynamics (MD) simulations of pyrolyzing systems in the high-temperature regime. MD simulations are currently a key tool to understand the mechanism of complex chemical processes such as pyrolysis and to observe their outcomes in different conditions, but these simulations are computationally expensive and typically limited to nanoseconds of simulation time. This limitation is inconsequential at high temperatures, where equilibrium is reached quickly, but at low temperatures, the system may not equilibrate within a tractable simulation timescale. In this work, we develop a method to construct kinetic models of hydrocarbon pyrolysis using the information from the high-temperature high-reactivity regime. We then extrapolate this model to low temperatures, which enables microsecond-long simulations to be performed. We show that this approach accurately predicts the time evolution of small molecules, as well as the size and composition of long carbon chains across a wide range of temperatures and compositions. Further, we show that the range of suitable temperatures for extrapolation can easily be improved by adding more simulations to the training data. Compared to experimental results, our kinetic model leads to similar compositional trends while allowing for more detailed kinetic and mechanistic insights.


Assuntos
Hidrocarbonetos , Simulação de Dinâmica Molecular , Cinética , Temperatura , Hidrocarbonetos/química , Temperatura Alta
3.
J Phys Chem A ; 125(19): 4233-4244, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33973780

RESUMO

The high computational cost of evaluating atomic interactions recently motivated the development of computationally inexpensive kinetic models, which can be parameterized from molecular dynamics (MD) simulations of the complex chemistry of thousands of species or other processes and accelerate the prediction of the chemical evolution by up to four orders of magnitude. Such models go beyond the commonly employed potential energy surface fitting methods in that they are aimed purely at describing kinetic effects. So far, such kinetic models utilize molecular descriptions of reactions and have been constrained to only reproduce molecules previously observed in MD simulations. Therefore, these descriptions fail to predict the reactivity of unobserved molecules, for example, in the case of large molecules or solids. Here, we propose a new approach for the extraction of reaction mechanisms and reaction rates from MD simulations, namely, the use of atomic-level features. Using the complex chemical network of hydrocarbon pyrolysis as an example, it is demonstrated that kinetic models built using atomic features are able to explore chemical reaction pathways never observed in the MD simulations used to parameterize them, a critical feature to describe rare events. Atomic-level features are shown to construct reaction mechanisms and estimate reaction rates of unknown molecular species from elementary atomic events. Through comparisons of the model ability to extrapolate to longer simulation time scales and different chemical compositions than the ones used for parameterization, it is demonstrated that kinetic models employing atomic features retain the same level of accuracy and transferability as the use of features based on molecular species, while being more compact and parameterized with less data. We also find that atomic features can better describe the formation of large molecules enabling the simultaneous description of small molecules and condensed phases.

4.
J Phys Chem A ; 123(9): 1874-1881, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30735373

RESUMO

Molecular dynamics (MD) simulation of complex chemistry typically involves thousands of atoms propagating over millions of time steps, generating a wealth of data. Traditionally these data are used to calculate some aggregate properties of the system and then discarded, but we propose that these data can be reused to study related chemical systems. Using approximate chemical kinetic models and methods from statistical learning, we study hydrocarbon chemistries under extreme thermodynamic conditions. We discover that a single MD simulation can contain sufficient information about reactions and rates to predict the dynamics of related yet different chemical systems using kinetic Monte Carlo (KMC) simulation. Our learned KMC models identify thousands of reactions and run 4 orders of magnitude faster than MD. The transferability of these models suggests that we can viably reuse data from existing MD simulations to accelerate future simulation studies and reduce the number of new MD simulations required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...