Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(10): e1010952, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37782669

RESUMO

Heterozygous de novo loss-of-function mutations in the gene expression regulator HNRNPU cause an early-onset developmental and epileptic encephalopathy. To gain insight into pathological mechanisms and lay the potential groundwork for developing targeted therapies, we characterized the neurophysiologic and cell-type-specific transcriptomic consequences of a mouse model of HNRNPU haploinsufficiency. Heterozygous mutants demonstrated global developmental delay, impaired ultrasonic vocalizations, cognitive dysfunction and increased seizure susceptibility, thus modeling aspects of the human disease. Single-cell RNA-sequencing of hippocampal and neocortical cells revealed widespread, yet modest, dysregulation of gene expression across mutant neuronal subtypes. We observed an increased burden of differentially-expressed genes in mutant excitatory neurons of the subiculum-a region of the hippocampus implicated in temporal lobe epilepsy. Evaluation of transcriptomic signature reversal as a therapeutic strategy highlights the potential importance of generating cell-type-specific signatures. Overall, this work provides insight into HNRNPU-mediated disease mechanisms and provides a framework for using single-cell RNA-sequencing to study transcriptional regulators implicated in disease.


Assuntos
Haploinsuficiência , Transcriptoma , Animais , Humanos , Camundongos , Haploinsuficiência/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Neurônios/metabolismo , RNA/metabolismo , Convulsões/genética , Transcriptoma/genética
2.
iScience ; 26(1): 105797, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36594023

RESUMO

Generating effective therapies for neurodevelopmental disorders has remained elusive. An emerging drug discovery approach for neurodevelopmental disorders is to characterize transcriptome-wide dysregulation in an appropriate model system and screen therapeutics based on their capacity to restore functionally relevant expression patterns. We characterized transcriptomic dysregulation in a human model of HNRNPU-related disorder to explore the potential of such a paradigm. We identified widespread dysregulation in functionally relevant pathways and then compared dysregulation in a human model to transcriptomic differences in embryonic and perinatal mice to determine whether dysregulation in an in vitro human model is partially replicated in an in vivo model of HNRNPU-related disorder. Strikingly, we find enrichment of co-dysregulation between 45-day-old human organoids and embryonic, but not perinatal, mice from distinct models of HNRNPU-related disorder. Thus, hnRNPU deficient human organoids may only be suitable to model transcriptional dysregulation in certain cell types within a specific developmental time window.

3.
Nat Rev Drug Discov ; 17(3): 183-196, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29217837

RESUMO

For the past three decades, the use of genomics to inform drug discovery and development pipelines has generated both excitement and scepticism. Although earlier efforts successfully identified some new drug targets, the overall clinical efficacy of developed drugs has remained unimpressive, owing in large part to the heterogeneous causes of disease. Recent technological and analytical advances in genomics, however, have now made it possible to rapidly identify and interpret the genetic variation underlying a single patient's disease, thereby providing a window into patient-specific mechanisms that cause or contribute to disease, which could ultimately enable the 'precise' targeting of these mechanisms. Here, we first examine and highlight the successes and limitations of the earlier phases of genomics in drug discovery and development. We then review the current major efforts in precision medicine and discuss the potential broader utility of mechanistically guided treatments going forward.


Assuntos
Desenvolvimento de Medicamentos , Genômica/métodos , Neoplasias/tratamento farmacológico , Preparações Farmacêuticas/química , Medicina de Precisão , Doenças Raras/tratamento farmacológico , Humanos
4.
Genome Res ; 26(10): 1411-1416, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27516621

RESUMO

Cultured neuronal networks monitored with microelectrode arrays (MEAs) have been used widely to evaluate pharmaceutical compounds for potential neurotoxic effects. A newer application of MEAs has been in the development of in vitro models of neurological disease. Here, we directly evaluated the utility of MEAs to recapitulate in vivo phenotypes of mature microRNA-128 (miR-128) deficiency, which causes fatal seizures in mice. We show that inhibition of miR-128 results in significantly increased neuronal activity in cultured neuronal networks derived from primary mouse cortical neurons. These results support the utility of MEAs in developing in vitro models of neuroexcitability disorders, such as epilepsy, and further suggest that MEAs provide an effective tool for the rapid identification of microRNAs that promote seizures when dysregulated.


Assuntos
Potenciais de Ação , MicroRNAs/genética , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Convulsões/genética , Análise Serial de Tecidos/métodos , Animais , Células Cultivadas , Córtex Cerebral/citologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Convulsões/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...