Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(46): 16303-16314, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37939256

RESUMO

Oil/water interfaces are ubiquitous in nature. Opposing polarities at these interfaces attract surface-active molecules, which can seed complex viscoelastic or even solid interfacial structure. Biorelevant proteins such as hydrophobin, polymers such as PNIPAM, and the asphaltenes in crude oil (CRO) are examples of some systems where such layers can occur. When a pendant drop of CRO is aged in brine, it can form an interfacial elastic membrane of asphaltenes so stiff that it wrinkles and crumples upon retraction. Most of the work studying CRO/brine interfaces focuses on the viscoelastic liquid regime, leaving a wide range of fully solidified, elastic interfaces largely unexplored. In this work, we quantitatively measure elasticity in all phases of drop retraction. In early retraction, the interface shows a fluid viscoelasticity measurable using a Gibbs isotherm or dilatational rheology. Further retraction causes a phase transition to a 2D elastic solid with nonisotropic, nonhomogeneous surface stresses. In this regime, we use new techniques in the elastic membrane theory to fit for the elasticities of these solid capsules. These elastic measurements can help us develop a deeper understanding not only of CRO interfaces but also of the myriad fluid systems with solid interfacial layers.

2.
J Colloid Interface Sci ; 607(Pt 2): 1709-1716, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34592556

RESUMO

HYPOTHESIS: In concentrated suspensions, the dynamics of colloids are strongly influenced by the shape and topographical surface characteristics of the particles. As the particles get into close proximity, surface roughness alters the translational and rotational Brownian motions in different ways. Eventually, the rotations will get frustrated due to geometric hindrance from interacting asperities. EXPERIMENTS: We use model raspberry-like colloids to study the effect of roughness on the translational and rotational dynamics. Using Confocal Scanning Laser Microscopy and particle tracking, we simultaneously resolve the two types of Brownian motion and obtain the corresponding Mean Squared Displacements for varying concentrations up to the maximum packing fraction. FINDINGS: Roughness not only lowers the concentration of the translational colloidal glass transition, but also generates a broad concentration range in which the rotational Brownian motion changes signature from high-amplitude diffusive to low-amplitude rattling. This hitherto not reported second glass transition for rough spherical colloids emerges when the particle intersurface distance becomes comparable to the roughness length scale. Our work provides a unifying understanding of the surface characteristics' effect on the rotational dynamics during glass formation and provides a microscopic foundation for many roughness-related macroscale phenomena in nature and technology.


Assuntos
Coloides , Vitrificação , Difusão , Movimento (Física) , Suspensões
3.
Anal Chem ; 93(38): 12966-12972, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34517698

RESUMO

We demonstrate how algorithm-improved confocal Raman microscopy (ai-CRM), in combination with chemical enhancement by two-dimensional substrates, can be used as an ultrasensitive detection method for rhodamine (R6G) molecules adsorbed from aqueous solutions. After developing a protocol for laser-induced reduction of graphene oxide, followed by noninvasive Raman imaging, a limit of detection (LOD) of 5 × 10-10 M R6G was achieved using ai-CRM. An equivalent subnanomolar LOD was also achieved on another graphene oxide analogue -UV/ozone-oxidized graphene. These record-breaking detection capabilities also enabled us to study the adsorption kinetics and image the spatial distribution of the adsorbed R6G. These findings indicate a strong potential for algorithm-improved graphene-enhanced Raman spectroscopy as a facile method for detecting, imaging, and quantifying trace amounts of adsorbing molecules on a variety of 2D substrates.


Assuntos
Grafite , Limite de Detecção , Rodaminas , Análise Espectral Raman
4.
J Colloid Interface Sci ; 584: 551-560, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33129164

RESUMO

HYPOTHESIS: The wettability of complex fluids on surfaces usually depends on the adsorption of solutes to any of the constituting interfaces. Controlling such interfacial processes by varying the composition of a phase enables the design of smart responsive systems. Our goal is to demonstrate that 3D Confocal Raman Microscopy (CRM) can reveal the mechanistic details of such processes by allowing to simultaneously monitor the contact angle variation and redistribution of the chemical species involved. EXPERIMENTS: Motivated by the enhanced oil recovery process of low salinity water flooding, we studied the response of picolitre oil drops on mineral substrates upon varying the ambient brine salinity. The substrates were pre-coated with thin layers of deuterated-stearic acid (surfactant) that display salinity-dependent stability. FINDINGS: 3D CRM imaging using a recently proposed faster 'ai' (algorithm-improved) mode reveals that the surfactant layer is stable at high salinities, leading to preferential oil wetting. Upon reducing the ambient brine salinity, this layer decomposes and the investigated surfaces of mica and - somewhat less pronounced - silica become more water wet. Eventually, the surfactant is found to partly dissolve in the oil and partly precipitate at the oil-water interface. We anticipate that ai-3D-CRM will prove useful to holistically study similar systems displaying reactive wetting.

5.
ACS Appl Energy Mater ; 3(2): 1775-1783, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32478312

RESUMO

Semi-solid fluid electrode-based battery (SSFB) and supercapacitor technologies are seen as very promising candidates for grid energy storage. However, unlike for traditional batteries, their performance can quickly get compromised by the formation of a poorly conducting solid-electrolyte interphase (SEI) on the particle surfaces. In this work we examine SEI film formation in relation to typical electrochemical conditions by combining cyclic voltammetry (CV) with quartz crystal microbalance dissipation monitoring (QCM-D). Sputtered layers of typical SSFB materials like titanium dioxide (TiO2) and carbon, immersed in alkyl carbonate solvents, are cycled to potentials of relevance to both traditional and flow systems. Mass changes due to lithium intercalation and SEI formation are distinguished by measuring the electrochemical current simultaneously with the damped mechanical oscillation. Both the TiO2 and amorphous carbon layers show a significant irreversible mass increase on continued exposure to (even mildly) reducing electrochemical conditions. Studying the small changes within individual charge-discharge cycles, TiO2 shows mass oscillations, indicating a partial reversibility due to lithium intercalation (not found for carbon). Viscoelastic signatures in the megahertz frequency regime confirm the formation and growth of a soft layer, again with oscillations for TiO2 but not for carbon. All these observations are consistent with irreversible SEI formation for both materials and reversible Li intercalation for TiO2. Our results highlight the need for careful choices of the materials chemistry and a sensitive electrochemical screening for fluid electrode systems.

6.
J Colloid Interface Sci ; 576: 322-329, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32447022

RESUMO

Real time visualization and tracking of colloidal particles with 3D resolution is essential for probing the local structure and dynamics in complex fluids. Although tracking translational motion of spherical particles is well-known, accessing rotational dynamics of such particles remains a great challenge. Here, we report a novel approach of using fluorescently labeled raspberry-like colloids with an optical anisotropy to concurrently track translational and rotational dynamics in 3 dimensions. The raspberry-like particles are coated by a silica layer of adjustable thickness, which allows tuning the surface roughness. The synthesis and applicability of the proposed method is demonstrated by two types of probes: rough and smoothened. The accuracies of measuring Mean Squared (Angular) Displacements are also demonstrated by using these 2 probes dispersed in 2 different solvents. The presented 3D trackable colloids offer a high potential for wide range of applications and studies, such as probing the dynamics of crystallization, phase transitions, biological interactions and the effect of surface roughness on diffusion.

7.
Natl Sci Rev ; 7(3): 620-628, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34692081

RESUMO

Confocal Raman microscopy is important for characterizing 2D materials, but its low throughput significantly hinders its applications. For metastable materials such as graphene oxide (GO), the low throughput is aggravated by the requirement of extremely low laser dose to avoid sample damage. Here we introduce algorithm-improved confocal Raman microscopy (ai-CRM), which increases the Raman scanning rate by one to two orders of magnitude with respect to state-of-the-art works for a variety of 2D materials. Meanwhile, GO can be imaged at a laser dose that is two to three orders of magnitude lower than previously reported, such that laser-induced variations of the material properties can be avoided. ai-CRM also enables fast and spatially resolved quantitative analysis, and is readily extended to 3D mapping of composite materials. Since ai-CRM is based on general mathematical principles, it is cost-effective, facile to implement and universally applicable to other hyperspectral imaging methods.

8.
Rev Sci Instrum ; 90(2): 025112, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30831771

RESUMO

We describe the extension of a rheometer to enable in situ impedance spectroscopy and electrochemical cycling. Key advantages of this instrument over traditional flow-channel based methods for studying fluid electrodes are the possibilities to monitor the rheological properties during cycling as well as to control the mechanical history of the sample. We describe two electrochemical configurations of the instrument, allowing fluid electrodes to be studied as full and half-cells. To demonstrate the systems' capabilities, we present characterizations of 4 different fluid electrode systems.

9.
Langmuir ; 33(7): 1629-1638, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28122184

RESUMO

We studied the effects of shear and its history on suspensions of carbon black (CB) in lithium ion battery electrolyte via simultaneous rheometry and electrical impedance spectroscopy. Ketjen black (KB) suspensions showed shear thinning and rheopexy and exhibited a yield stress. Shear step experiments revealed a two time scale response. The immediate effect of decreasing the shear rate is an increase in both viscosity and electronic conductivity. In a much slower secondary response, both quantities change in the opposite direction, leading to a reversal of the initial change in the conductivity. Stepwise increases in the shear rate lead to similar responses in the opposite direction. This remarkable behavior is consistent with a picture in which agglomerating KB particles can stick directly on contact, forming open structures, and then slowly interpenetrate and densify. The fact that spherical CB particles show the opposite slow response suggests that the fractal structure of the KB primary units plays an important role. A theoretical scheme was used to analyze the shear and time-dependent viscosity and conductivity. Describing the agglomerates as effective hard spheres with a fractal architecture and using an effective medium approximation for the conductivity, we found the changes in the derived suspension structure to be in agreement with our qualitative mechanistic picture. This behavior of KB in flow has consequences for the properties of the gel network that is formed immediately after the cessation of shear: both the yield stress and the electronic conductivity increase with the previously applied shear rate. Our findings thus have clear implications for the operation and filling strategies of semisolid flow batteries.

10.
Biomicrofluidics ; 5(1): 11101, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21522489

RESUMO

We discuss a microfluidic system in which (programmable) local electric fields originating from embedded and protected electrodes are used to control the formation and merging of droplets in a microchannel. The creation of droplets-on-demand (DOD) is implemented using the principle of electrowetting. Combined with hydrodynamic control, the droplet size and formation frequency can be varied independently. Using two synchronized DOD injectors, merging-on-demand (MOD) is achieved via electrocoalescence. The efficiency of MOD is 98% based on hundreds of observations. These two functionalities can be activated independently.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(5 Pt 1): 051910, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19518483

RESUMO

Colloidal particles embedded in the cytoplasm of living mammalian cells have been found to display remarkable heterogeneity in their amplitude of motion. However, consensus on the significance and origin of this phenomenon is still lacking. We conducted experiments on Hmec-1 cells loaded with about 100 particles to reveal the intracellular particle dynamics as a function of both location and time. Central quantity in our analysis is the amplitude (A) of the individual mean-squared displacement (iMSD), averaged over a short time. Histograms of A were measured, (1) over all particles present at the same time and (2) for individual particles as a function of time. Both distributions showed significant broadening compared to particles in Newtonian liquid, indicating that the particle dynamics varies with both location and time. However, no systematic dependence of A on intracellular location was found. Both the (strong) spatial and (weak) temporal variations were further analyzed by correlation functions of A . Spatial cross correlations were rather weak down to interparticle distances of 1 microm , suggesting that the precise intracellular probe distribution is not crucial for observing a dynamic behavior that is representative for the whole cell. Temporal correlations of A decayed at approximately 10 s , possibly suggesting an intracellular reorganization at this time scale. These findings imply (1) that both individual particle dynamics and the ensemble averaged behavior in a given cell can be measured if there are enough particles per cell and (2) that the amplitude and power-law exponent of iMSDs can be used to reveal local dynamics. We illustrate this by showing how superdiffusive and subdiffusive behaviors may be hidden under an apparently diffusive global dynamics.


Assuntos
Biopolímeros/fisiologia , Fenômenos Fisiológicos Celulares/fisiologia , Modelos Biológicos , Simulação por Computador , Difusão
12.
J Biomed Opt ; 14(6): 064005, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20059243

RESUMO

We studied the dynamics of two types of intracellular probe particles, ballistically injected latex spheres and endogenous granules, in tumor cell lines of different metastatic potential: breast tumor cells (MCF-7 malignant, MCF-10A benign) and pancreas adenocarcinoma (PaTu8988T malignant, PaTu8988S benign). For both tissue types and for both probes, the mean squared displacement (MSD) function measured in the malignant cells was substantially larger than in the benign cells. Only a few cells were needed to characterize the tissue as malignant or benign based on their MSD, since variations in MSD within the same cell line were relatively small. These findings suggest that intracellular particle tracking (IPT) can serve as a simple and reliable method for characterization of cell states obtained from a small amount of cell sample. Mechanical analysis of the same cell lines with atomic force microscopy (AFM) in force-distance mode revealed that AFM could distinguish between the benign and malignant breast cancer cells but not the pancreatic tumor cell lines. This underlines the potential value of IPT as a complementary nanomechanical tool for studying cell-state-dependent mechanical properties.


Assuntos
Microscopia de Força Atômica/métodos , Imagem Molecular/métodos , Neoplasias/ultraestrutura , Reologia/métodos , Neoplasias da Mama/ultraestrutura , Linhagem Celular Tumoral , Feminino , Humanos , Espaço Intracelular , Microesferas , Neoplasias Pancreáticas/ultraestrutura , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...