Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J AOAC Int ; 106(3): 725-736, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-36413047

RESUMO

BACKGROUND: Frequent testing for Legionella concentration in water is required by most health risk monitoring organizations worldwide. Domestic hot water and cooling tower water networks must be regularly controlled to prevent Legionnaires' disease, a potentially deadly lung infection. MICA Legionella is the fastest culture-based detection method for all serogroups of Legionella pneumophila, with automatic enumeration in 48 h and no need for confirmation. OBJECTIVE: This study compares the performance and robustness of MICA Legionella with the reference method ISO 11731:2017 for the enumeration of culturable L. pneumophila. METHODS: MICA Legionella and ISO 11731:2017 results were compared for domestic hot water and cooling tower water. Inclusivity and exclusivity were tested on reference and environmental strains. Ruggedness, lot-to-lot consistency, and stability of the reagents kit were also studied. RESULTS: Enumeration of L. pneumophila by MICA Legionella was statistically equivalent to ISO 11731:2017 in both matrixes. In cooling tower waters, MICA Legionella showed better sensitivity than ISO 11731:2017. It presented a 94% sensitivity and a 97% specificity. CONCLUSION: MICA Legionella is a highly sensitive and specific method for culturable L. pneumophila enumeration. It presents, in 48 hours, equivalent or better results than ISO 11731:2017. Its protocol is robust to variations. Its reagents kit is stable for up to 18 months. HIGHLIGHTS: MICA Legionella is a robust and reliable method for the enumeration of culturable L. pneumophila in domestic and cooling tower water. It reduces significantly the number of sample pretreatments required in ISO 11731:2017. Automatic identification and enumeration of L. pneumophila microcolonies eliminates the requirement to have skilled analysts and limits the results variability. It also greatly reduces the time to results to 48 h instead of 7-10 days with ISO 11731:2017 while providing statistically equivalent results.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Microbiologia da Água , Doença dos Legionários/prevenção & controle , Água
2.
Phys Biol ; 15(2): 026003, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28980528

RESUMO

Almost all living organisms use protein chaperones with a view to preventing proteins from misfolding or aggregation either spontaneously or during cellular stress. This work uses a reaction-diffusion stochastic model to describe the dynamic localization of the Hsp70 chaperone DnaK in Escherichia coli cells during transient proteotoxic collapse characterized by the accumulation of insoluble proteins. In the model, misfolded ('abnormal') proteins are produced during alcoholic stress and have the propensity to aggregate with a polymerization-like kinetics. When aggregates diffuse more slowly they grow larger. According to Michaelis-Menten-type kinetics, DnaK has the propensity to bind with misfolded proteins or aggregates in order to catalyse refolding. To match experimental fluorescence microscopy data showing clusters of DnaK-GFP localized in multiple foci, the model includes spatial zones with local reduced diffusion rates to generate spontaneous assemblies of DnaK called 'foci'. Numerical simulations of our model succeed in reproducing the kinetics of DnaK localization experimentally observed. DnaK starts from foci, moves to large aggregates during acute stress, resolves those aggregates during recovery and finally returns to its initial punctate localization pattern. Finally, we compare real biological events with hypothetical repartitions of the protein aggregates or DnaK. We then notice that DnaK action is more efficient on protein aggregates than on protein homogeneously distributed.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de Choque Térmico HSP70/química , Chaperonas Moleculares/química , Dobramento de Proteína , Cinética , Modelos Moleculares , Processos Estocásticos
3.
PLoS One ; 11(8): e0159706, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27494019

RESUMO

We recently developed a mathematical model for predicting reactive oxygen species (ROS) concentration and macromolecules oxidation in vivo. We constructed such a model using Escherichia coli as a model organism and a set of ordinary differential equations. In order to evaluate the major defences relative roles against hydrogen peroxide (H2 O2), we investigated the relative contributions of the various reactions to the dynamic system and searched for approximate analytical solutions for the explicit expression of changes in H2 O2 internal or external concentrations. Although the key actors in cell defence are enzymes and membrane, a detailed analysis shows that their involvement depends on the H2 O2 concentration level. Actually, the impact of the membrane upon the H2 O2 stress felt by the cell is greater when micromolar H2 O2 is present (9-fold less H2 O2 in the cell than out of the cell) than when millimolar H2 O2 is present (about 2-fold less H2 O2 in the cell than out of the cell). The ratio between maximal external H2 O2 and internal H2 O2 concentration also changes, reducing from 8 to 2 while external H2 O2 concentration increases from micromolar to millimolar. This non-linear behaviour mainly occurs because of the switch in the predominant scavenger from Ahp (Alkyl Hydroperoxide Reductase) to Cat (catalase). The phenomenon changes the internal H2 O2 maximal concentration, which surprisingly does not depend on cell density. The external H2 O2 half-life and the cumulative internal H2 O2 exposure do depend upon cell density. Based on these analyses and in order to introduce a concept of dose response relationship for H2 O2-induced cell death, we developed the concepts of "maximal internal H2 O2 concentration" and "cumulative internal H2 O2 concentration" (e.g. the total amount of H2 O2). We predict that cumulative internal H2 O2 concentration is responsible for the H2 O2-mediated death of bacterial cells.


Assuntos
Escherichia coli/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Catalase/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Cinética , Modelos Teóricos , Estresse Oxidativo/efeitos dos fármacos , Peroxirredoxinas/metabolismo , Superóxidos/metabolismo
4.
PLoS One ; 10(6): e0127700, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26061695

RESUMO

Currently, identification of pathogenic bacteria present at very low concentration requires a preliminary culture-based enrichment step. Many research efforts focus on the possibility to shorten this pre-enrichment step which is needed to reach the minimal number of cells that allows efficient identification. Rapid microbiological controls are a real public health issue and are required in food processing, water quality assessment or clinical pathology. Thus, the development of new methods for faster detection and isolation of pathogenic culturable bacteria is necessary. Here we describe a specific enrichment technique for culturable Gram negative bacteria, based on non-lethal click chemistry and the use of magnetic beads that allows fast detection and isolation. The assimilation and incorporation of an analog of Kdo, an essential component of lipopolysaccharides, possessing a bio-orthogonal azido function (Kdo-N3), allow functionalization of almost all Gram negative bacteria at the membrane level. Detection can be realized through strain-promoted azide-cyclooctyne cycloaddition, an example of click chemistry, which interestingly does not affect bacterial growth. Using E. coli as an example of Gram negative bacterium, we demonstrate the excellent specificity of the technique to detect culturable E. coli among bacterial mixtures also containing either dead E. coli, or live B. subtilis (as a model of microorganism not containing Kdo). Finally, in order to specifically isolate and concentrate culturable E. coli cells, we performed separation using magnetic beads in combination with click chemistry. This work highlights the efficiency of our technique to rapidly enrich and concentrate culturable Gram negative bacteria among other microorganisms that do not possess Kdo within their cell envelope.


Assuntos
Química Click/métodos , Bactérias Gram-Negativas/isolamento & purificação , Separação Imunomagnética/métodos , Azidas/análise , Técnicas de Cultura de Células , Açúcares Ácidos/análise
5.
Heliyon ; 1(4): e00049, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27441232

RESUMO

Imlay and Linn show that exposure of logarithmically growing Escherichia coli to hydrogen peroxide (H2O2) leads to two kinetically distinguishable modes of cell killing. Mode one killing is pronounced near 1 mM concentration of H2O2 and is caused by DNA damage, whereas mode-two killing requires higher concentration ([Formula: see text]). The second mode seems to be essentially due to damage to all macromolecules. This phenomenon has also been observed in Fenton in vitro systems with DNA nicking caused by hydroxyl radical ([Formula: see text]). To our knowledge, there is currently no mathematical model for predicting mode one killing in vitro or in vivo after H2O2 exposure. We propose a simple model, using Escherichia coli as a model organism and a set of ordinary differential equations. Using this model, we show that available iron and cell density, two factors potentially involved in ROS dynamics, play a major role in the prediction of the experimental results obtained by our team and in previous studies. Indeed the presence of the mode one killing is strongly related to those two parameters. To our knowledge, mode-one death has not previously been explained. Imlay and Linn (Imlay and Linn, 1986) suggested that perhaps the amount of the toxic species was reduced at high concentrations of H2O2 because hydroxyl (or other) radicals might be quenched directly by hydrogen peroxide with the concomitant formation of superoxide anion (a less toxic species). We demonstrate (mathematically and numerically) that free available iron decrease is necessary to explain mode one killing which cannot appear without it and that H2O2 quenching or consumption is not responsible for mode-one death. We are able to follow ROS concentration (particularly responsible for mode one killing) after exposure to H2O2. This model therefore allows us to understand two major parameters involved in the presence or not of the first killing mode.

6.
BMC Microbiol ; 14: 3, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24383402

RESUMO

BACKGROUND: Legionella pneumophila is a waterborne pathogen responsible for Legionnaires' disease, an infection which can lead to potentially fatal pneumonia. After disinfection, L. pneumophila has been detected, like many other bacteria, in a "viable but non culturable" state (VBNC). The physiological significance of the VBNC state is unclear and controversial: it could be an adaptive response favoring long-term survival; or the consequence of cellular deterioration which, despite maintenance of certain features of viable cells, leads to death; or an injured state leading to an artificial loss of culturability during the plating procedure. VBNC cells have been found to be resuscitated by contact with amoebae. RESULTS: We used quantitative microscopic analysis, to investigate this "resuscitation" phenomenon in L. pneumophila in a model involving amending solid plating media with ROS scavengers (pyruvate or glutamate), and co-culture with amoebae. Our results suggest that the restoration observed in the presence of pyruvate and glutamate may be mostly due to the capacity of these molecules to help the injured cells to recover after a stress. We report evidence that this extracellular signal leads to a transition from a not-culturable form to a culturable form of L. pneumophila, providing a technique for recovering virulent and previously uncultivated forms of L. pneumophila. CONCLUSION: These new media could be used to reduce the risk of underestimation of counts of virulent of L. pneumophila cells in environmental samples.


Assuntos
Amoeba/crescimento & desenvolvimento , Amoeba/microbiologia , Técnicas Bacteriológicas/métodos , Meios de Cultura/química , Desinfetantes/toxicidade , Legionella pneumophila/isolamento & purificação , Legionella pneumophila/fisiologia , Ácido Glutâmico/metabolismo , Humanos , Legionella pneumophila/efeitos dos fármacos , Legionella pneumophila/crescimento & desenvolvimento , Microscopia , Ácido Pirúvico/metabolismo , Ressuscitação
7.
Angew Chem Int Ed Engl ; 53(5): 1275-8, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24446310

RESUMO

Legionella pneumophila is a pathogenic bacterium involved in regular outbreaks characterized by a relatively high fatality rate and an important societal impact. Frequent monitoring of the presence of this bacterium in environmental water samples is necessary to prevent these epidemic events, but the traditional culture-based detection and identification method requires up to 10 days. Reported herein is a method allowing identification of Legionella pneumophila by metabolic lipopolysaccharide labeling which targets, for the first time, a precursor to monosaccharides that are specifically present within the O-antigen of the bacterium. This new approach allows easy detection of living Legionella pneumophila, while other Legionella species are not labeled.


Assuntos
Legionella pneumophila/isolamento & purificação , Lipopolissacarídeos/química , Química Click , Corantes Fluorescentes/química , Legionella pneumophila/metabolismo , Lipopolissacarídeos/metabolismo , Microscopia Confocal , Monossacarídeos/química , Antígenos O/química , Antígenos O/metabolismo , Sorotipagem
8.
Microbiologyopen ; 2(1): 123-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23281341

RESUMO

Discrimination among viable/active or dead/inactive cells in a microbial community is a vital question to address issues on ecological microbiology or microbiological quality control. It is commonly assumed that metabolically active cells (ChemchromeV6 [CV6] procedure) correspond to viable cells (direct viable count procedure [DVC]), although this assumption has never been demonstrated and is therefore a matter of debate. Indeed, simultaneous determination of cell viability and metabolic activity has never been performed on the same cells. Here, we developed a microfluidic device to investigate the viability and the metabolic activity of Escherichia coli cells at single-cell level. Cells were immobilized in a flow chamber in which different solutions were sequentially injected according to different scenarios. By using time-lapse microscopy combined with automated tracking procedures, we first successfully assessed the ability of cells to divide and their metabolic activity at single-cell level. Applying these two procedures on the same cells after a hypochlorous acid (HOCl) treatment, we showed that the ability of cells to divide and their metabolic activity were anticorrelated. These results indicate that the relation between CV6 uptake and cell viability may be partially incorrect. Care must be taken in using the terms "CV6-positive" and "viable" synonymously.


Assuntos
Divisão Celular/efeitos dos fármacos , Desinfetantes/farmacologia , Escherichia coli/efeitos dos fármacos , Metabolismo/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Ácido Hipocloroso/farmacologia , Microfluídica/métodos , Microscopia , Análise de Célula Única , Coloração e Rotulagem/métodos , Imagem com Lapso de Tempo
10.
Can J Microbiol ; 57(11): 923-33, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22017705

RESUMO

Adaptation to a solar saltern environment requires mechanisms providing tolerance not only to salinity but also to UV radiation (UVR) and to reactive oxygen species (ROS). We cultivated prokaryote halophiles from two different salinity ponds: the concentrator M1 pond (240 g·L(-1) NaCl) and the crystallizer TS pond (380 g·L(-1) NaCl). We then estimated UV-B and hydrogen peroxide resistance according to the optimal salt concentration for growth of the isolates. We observed a higher biodiversity of bacterial isolates in M1 than in TS. All strains isolated from TS appeared to be extremely halophilic Archaea from the genus Halorubrum. Culturable strains isolated from M1 included extremely halophilic Archaea (genera Haloferax, Halobacterium, Haloterrigena, and Halorubrum) and moderately halophilic Bacteria (genera Halovibrio and Salicola). We also found that archaeal strains were more resistant than bacterial strains to exposure to ROS and UV-B. All organisms tested were more resistant to UV-B exposure at the optimum NaCl concentration for their growth, which is not always the case for H(2)O(2). Finally, if these results are extended to other prokaryotes present in a solar saltern, we could speculate that UVR has greater impact than ROS on the control of prokaryote biodiversity in a solar saltern.


Assuntos
Archaea/fisiologia , Archaea/efeitos da radiação , Bactérias/efeitos da radiação , Fenômenos Fisiológicos Bacterianos , Estresse Oxidativo , Raios Ultravioleta , Microbiologia da Água , Archaea/classificação , Archaea/efeitos dos fármacos , Archaea/genética , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Biodiversidade , Peróxido de Hidrogênio/farmacologia , Viabilidade Microbiana , Oxidantes/farmacologia , Filogenia , Lagoas/química , Lagoas/microbiologia , RNA Ribossômico 16S/genética , Salinidade , Tunísia
11.
Chem Res Toxicol ; 24(12): 2061-70, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-21732636

RESUMO

The toxicity of carbon dioxide has been established for close to a century. A number of animal experiments have explored both acute and long-term toxicity with respect to the lungs, the cardiovascular system, and the bladder, showing inflammatory and possible carcinogenic effects. Carbon dioxide also induces multiple fetal malformations and probably reduces fertility in animals. The aim of the review is to recapitulate the physiological and metabolic mechanisms resulting from CO(2) inhalation. As smokers are exposed to a high level of carbon dioxide (13%) that is about 350 times the level in normal air, we propose the hypothesis that carbon dioxide plays a major role in the long term toxicity of tobacco smoke.


Assuntos
Dióxido de Carbono/toxicidade , Acidose Respiratória/metabolismo , Acidose Respiratória/patologia , Animais , Bicarbonatos/química , Carcinógenos/toxicidade , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Humanos , Hipercapnia/metabolismo , Hipercapnia/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Reprodução/efeitos dos fármacos
12.
Int J Microbiol ; 2011: 240191, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21754938

RESUMO

An extremely halophilic archaeon, strain ETD6, was isolated from a marine solar saltern in Sfax, Tunisia. Analysis of the 16S rRNA gene sequence showed that the isolate was phylogenetically related to species of the genus Halorubrum among the family Halobacteriaceae, with a close relationship to Hrr. xinjiangense (99.77% of identity). However, value for DNA-DNA hybridization between strain ETD6 and Hrr.xinjiangense were about 24.5%. The G+C content of the genomic DNA was 65.1 mol% (T(m)). Strain ETD6 grew in 15-35% (w/v) NaCl. The temperature and pH ranges for growth were 20-55°C and 6-9, respectively. Optimal growth occurred at 25% NaCl, 37°C, and pH 7.4. The results of the DNA hybridization against Hrr. xinjiangense and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain ETD6 from other Hrr. species. Therefore, strain ETD6 represents a novel species of the genus Halorubrum, for which the name Hrr. sfaxense sp. nov. is proposed. The Genbank EMBL-EBI accession number is GU724599.

13.
Extremophiles ; 15(3): 347-58, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21424516

RESUMO

Here, we combined flow cytometry (FCM) and phylogenetic analyses after cell sorting to characterize the dominant groups of the prokaryotic assemblages inhabiting two ponds of increasing salinity: a crystallizer pond (TS) with a salinity of 390 g/L, and the non-crystallizer pond (M1) with a salinity of 200 g/L retrieved from the solar saltern of Sfax in Tunisia. As expected, FCM analysis enabled the resolution of high nucleic acid content (HNA) and low nucleic acid content (LNA) prokaryotes. Next, we performed a taxonomic analysis of the bacterial and archaeal communities comprising the two most populated clusters by phylogenetic analyses of 16S rRNA gene clone library. We show for the first time that the presence of HNA and LNA content cells could also be extended to the archaeal populations. Archaea were detected in all M1 and TS samples, whereas representatives of Bacteria were detected only in LNA for M1 and HNA for TS. Although most of the archaeal sequences remained undetermined, other clones were most frequently affiliated to Haloquadratum and Halorubrum. In contrast, most bacterial clones belonged to the Alphaproteobacteria class (Phyllobacterium genus) in M1 samples and to the Bacteroidetes phylum (Sphingobacteria and Salinibacter genus) in TS samples.


Assuntos
Archaea/classificação , Bactérias/classificação , Citometria de Fluxo , Filogenia , Microbiologia da Água , Água/química , Alphaproteobacteria/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Bacteroidetes/classificação , Biodiversidade , DNA Arqueal/isolamento & purificação , DNA Bacteriano/isolamento & purificação , Halorubrum/classificação , Processos Heterotróficos , RNA Ribossômico 16S/genética , Ribotipagem , Salinidade , Sphingobacterium/classificação , Tunísia
14.
EMBO Rep ; 12(4): 321-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21350502

RESUMO

Reactive oxygen species (ROS) are harmful because they can oxidize biological macromolecules. We show here that atmospheric CO(2) (concentration range studied: 40-1,000 p.p.m.) increases death rates due to H(2)O(2) stress in Escherichia coli in a dose-specific manner. This effect is correlated with an increase in H(2)O(2)-induced mutagenesis and, as shown by 8-oxo-guanine determinations in cells, DNA base oxidation rates. Moreover, the survival of mutants that are sensitive to aerobic conditions (Hpx(-) dps and recA fur), presumably because of their inability to tolerate ROS, seems to depend on CO(2) concentration. Thus, CO(2) exacerbates ROS toxicity by increasing oxidative cellular lesions.


Assuntos
Dióxido de Carbono/toxicidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Peróxido de Hidrogênio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Mutagênese/efeitos dos fármacos , Oxirredução/efeitos dos fármacos
15.
Int J Med Microbiol ; 301(4): 341-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21273120

RESUMO

The ability of Staphylococcus aureus to adapt to various conditions of stress is the result of a complex regulatory response. Among them, ClpC, belonging to the Hsp100/Clp ATPase family, seems to play an important role. For instance, we previously demonstrated that a functional clpC deletion resulted in enhanced survival in the late stationary phase (death phase period) compared to the parental S. aureus strain. However, the mechanisms for the enhanced survival of a S. aureus clpC mutant during the death phase period are still elusive. In Escherichia coli, among the factors that might lead to bacterial cell death during stationary phase, the amount of protein aggregates and/or oxidized proteins appears to be of major importance. Thus, in the present study, we have evaluated protein aggregates and carbonylated protein (as a marker of protein oxidation) contents both in the wild type and in an S. aureus clpC mutant during the exponential growth phase and the death phase. Whereas at all time points the tested clpC mutant exhibits the same amount of protein aggregates as the WT strain, the total amount of carbonylated proteins appears to be lower in the clpC mutant. Moreover, we observed that at the entrance of the death phase carbon-metabolizing enzymes [such as the TCA cycle enzymes Mqo2 (malate: quinone oxidoreductase) and FumC/CitG (fumarate hydratase)] albeit not the bulk proteins are carbonylated to a larger extent in the clpC mutant. Reduced activity of the TCA cycle due to specific carbonylation of these proteins will result in a decrease of endogenous oxidative stress which in turn might confer enhanced survival of the clpC mutant during the death phase period thus contributing to bacterial longevity and chronic infection.


Assuntos
Proteínas de Bactérias/metabolismo , Enzimas/metabolismo , Proteínas de Choque Térmico/metabolismo , Processamento de Proteína Pós-Traducional , Staphylococcus aureus/fisiologia , Proteínas de Bactérias/genética , Carbono/metabolismo , Ciclo do Ácido Cítrico , Deleção de Genes , Proteínas de Choque Térmico/genética , Humanos , Redes e Vias Metabólicas , Viabilidade Microbiana , Carbonilação Proteica , Staphylococcus aureus/enzimologia , Staphylococcus aureus/crescimento & desenvolvimento
16.
Biochim Biophys Acta ; 1811(4): 234-41, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21238605

RESUMO

The fact that Mycobacterium tuberculosis mobilizes lipid bodies (LB) located in the cytosol during infection process has been proposed for decades. However, the mechanisms and dynamics of mobilization of these lipid droplets within mycobacteria are still not completely characterized. Evidence in favour of this characterization was obtained here using a combined fluorescent microscopy and computational image processing approach. The decrease in lipid storage levels observed under nutrient depletion conditions was correlated with a significant increase in the size of the bacteria. LB fragmentation/condensation cycles were monitored in real time. The exact contribution of lipases in this process was confirmed using the lipase inhibitor tetrahydrolipstatin, which was found to prevent LB degradation and to limit the bacterial cell growth. The method presented here provides a powerful tool for monitoring in vivo lipolysis in mycobacteria and for obtaining new insights on the growth of cells and their entry into the dormant or reactivation phase. It should be particularly useful for studying the effects of chemical inhibitors and activators on cells as well as investigating other metabolic pathways.


Assuntos
Lipólise , Microscopia de Fluorescência/métodos , Mycobacterium smegmatis/crescimento & desenvolvimento , Imagem com Lapso de Tempo/métodos , Tuberculose/metabolismo , Proliferação de Células , Citosol/metabolismo , Lipase/metabolismo , Inanição , Triglicerídeos/metabolismo , Tuberculose/microbiologia
17.
PLoS One ; 4(9): e7282, 2009 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-19789641

RESUMO

Most time lapse microscopy experiments studying bacterial processes ie growth, progression through the cell cycle and motility have been performed on thin nutrient agar pads. An important limitation of this approach is that dynamic perturbations of the experimental conditions cannot be easily performed. In eukaryotic cell biology, fluidic approaches have been largely used to study the impact of rapid environmental perturbations on live cells and in real time. However, all these approaches are not easily applicable to bacterial cells because the substrata are in all cases specific and also because microfluidics nanotechnology requires a complex lithography for the study of micrometer sized bacterial cells. In fact, in many cases agar is the experimental solid substratum on which bacteria can move or even grow. For these reasons, we designed a novel hybrid micro fluidic device that combines a thin agar pad and a custom flow chamber. By studying several examples, we show that this system allows real time analysis of a broad array of biological processes such as growth, development and motility. Thus, the flow chamber system will be an essential tool to study any process that take place on an agar surface at the single cell level.


Assuntos
Bactérias/metabolismo , Microscopia/instrumentação , Ágar/química , Automação , Fenômenos Fisiológicos Bacterianos , Técnicas de Cultura de Células/instrumentação , Ciclo Celular , Desenho de Equipamento , Escherichia coli/metabolismo , Técnicas Analíticas Microfluídicas , Microfluídica/instrumentação , Microscopia/métodos , Myxococcus/metabolismo , Nanotecnologia/métodos
18.
PLoS One ; 4(10): e7269, 2009 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-19802390

RESUMO

BACKGROUND: Carbonyl derivatives are mainly formed by direct metal-catalysed oxidation (MCO) attacks on the amino-acid side chains of proline, arginine, lysine and threonine residues. For reasons unknown, only some proteins are prone to carbonylation. METHODOLOGY/PRINCIPAL FINDINGS: we used mass spectrometry analysis to identify carbonylated sites in: BSA that had undergone in vitro MCO, and 23 carbonylated proteins in Escherichia coli. The presence of a carbonylated site rendered the neighbouring carbonylatable site more prone to carbonylation. Most carbonylated sites were present within hot spots of carbonylation. These observations led us to suggest rules for identifying sites more prone to carbonylation. We used these rules to design an in silico model (available at http://www.lcb.cnrs-mrs.fr/CSPD/), allowing an effective and accurate prediction of sites and of proteins more prone to carbonylation in the E. coli proteome. CONCLUSIONS/SIGNIFICANCE: We observed that proteins evolve to either selectively maintain or lose predicted hot spots of carbonylation depending on their biological function. As our predictive model also allows efficient detection of carbonylated proteins in Bacillus subtilis, we believe that our model may be extended to direct MCO attacks in all organisms.


Assuntos
Bacillus subtilis/metabolismo , Bioquímica/métodos , Metais/química , Oxigênio/química , Carbonilação Proteica , Sequência de Aminoácidos , Arginina/química , Carbono/química , Catálise , Escherichia coli/metabolismo , Humanos , Lisina/química , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Prolina/química , Proteínas/química , Albumina Sérica/química , Treonina/química
19.
Appl Environ Microbiol ; 75(16): 5179-85, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19525274

RESUMO

The existence of Salmonella enterica serovar Typhimurium viable-but-nonculturable (VBNC) cells is a public health concern since they could constitute unrecognized sources of infection if they retain their pathogenicity. To date, many studies have addressed the ability of S. Typhimurium VBNC cells to remain infectious, but their conclusions are conflicting. An assumption could explain these conflicting results. It has been proposed that infectivity could be retained only temporarily after entry into the VBNC state and that most VBNC cells generated under intense stress could exceed the stage where they are still infectious. Using a Radioselectan density gradient centrifugation technique makes it possible to increase the VBNC-cell/culturable-cell ratio without increasing the exposure to stress and, consequently, to work with a larger proportion of newly VBNC cells. Here, we observed that (i) in the stationary phase, the S. Typhimurium population comprised three distinct subpopulations at 10, 24, or 48 h of culture; (ii) the VBNC cells were detected at 24 and 48 h; (iii) measurement of invasion gene (hilA, invF, and orgA) expression demonstrated that cells are highly heterogeneous within a culturable population; and (iv) invasion assays of HeLa cells showed that culturable cells from the different subpopulations do not display the same invasiveness. The results also suggest that newly formed VBNC cells are either weakly able or not able to successfully initiate epithelial cell invasion. Finally, we propose that at entry into the stationary phase, invasiveness may be one way for populations of S. Typhimurium to escape stochastic alteration leading to cell death.


Assuntos
Centrifugação com Gradiente de Concentração/métodos , Meios de Cultura , Viabilidade Microbiana , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Contagem de Colônia Microbiana , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Células HeLa/microbiologia , Humanos , Salmonella typhimurium/genética , Salmonella typhimurium/fisiologia , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência
20.
J Bacteriol ; 190(20): 6609-14, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18689474

RESUMO

Carbonylation is currently used as a marker for irreversible protein oxidative damage. Several studies indicate that carbonylated proteins are more prone to degradation than their nonoxidized counterparts. In this study, we observed that in Escherichia coli, more than 95% of the total carbonyl content consisted of insoluble protein and most were cytosolic proteins. We thereby demonstrate that, in vivo, carbonylated proteins are detectable mainly in an aggregate state. Finally, we show that detectable carbonylated proteins are not degraded in vivo. Here we propose that some carbonylated proteins escape degradation in vivo by forming carbonylated protein aggregates and thus becoming nondegradable. In light of these findings, we provide evidence that the accumulation of nondegradable carbonylated protein presented in an aggregate state contributes to the increases in carbonyl content observed during senescence.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Carbonilação Proteica , Cromatografia Líquida , Citoplasma/química , Eletroforese em Gel Bidimensional , Solubilidade , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...