Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17471, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952986

RESUMO

The restoration of succulent thicket (the semi-arid components of the Albany Subtropical Thicket biome endemic to South Africa) has largely focused on the reintroduction of Portulacaria afra L. Jacq-a leaf- and stem-succulent shrub-through the planting of unrooted cuttings directly into field sites. However, there has been inconsistent establishment and survival rates, with low rates potentially due to a range of factors (e.g., post-planting drought, frost or herbivory), including the poor condition of source material used. Here we test the effect of parent-plant and harvesting site on the root development of P. afra cuttings in a common garden experiment. Ten sites were selected along a ∼110 km transect, with cuttings harvested from five parent-plants per site. Leaf moisture content was determined for each parent-plant at the time of harvesting as a proxy for plant condition. Root development-percentage of rooted cuttings and mean root dry weight-was recorded for a subset of cuttings from each parent-plant after 35, 42, 48, 56, and 103 days after planting in a common garden setting. We found evidence for cutting root development (rooting percentage and root dry mass) to be strongly associated with harvesting site across all sampling days (p < 0.005 for all tests). These differences are likely a consequence of underlying physiological factors; this was supported by the significant but weak correlation (r 2 = 0.10-0.26) between the leaf moisture content of the parent-plant (at the time of harvesting) and dry root mass of the cuttings (at each of the sampling days). Our findings demonstrate that varying plant condition across sites can significantly influence root development during dry phases (i.e., intra- and inter-annual droughts) and that this may be a critical component that needs to be understood as part of any restoration programme. Further work is required to identify the environmental conditions that promote or impede root development in P. afra cuttings.


Assuntos
Secas , Raízes de Plantas , África do Sul , Raízes de Plantas/crescimento & desenvolvimento , Conservação dos Recursos Naturais/métodos , Caryophyllales , Folhas de Planta/crescimento & desenvolvimento
2.
PeerJ ; 10: e14219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262418

RESUMO

Ecosystem restoration and reforestation often operate at large scales, whereas monitoring practices are usually limited to spatially restricted field measurements that are (i) time- and labour-intensive, and (ii) unable to accurately quantify restoration success over hundreds to thousands of hectares. Recent advances in remote sensing technologies paired with deep learning algorithms provide an unprecedented opportunity for monitoring changes in vegetation cover at spatial and temporal scales. Such data can feed directly into adaptive management practices and provide insights into restoration and regeneration dynamics. Here, we demonstrate that convolutional neural network (CNN) segmentation algorithms can accurately classify the canopy cover of Portulacaria afra Jacq. in imagery acquired using different models of unoccupied aerial vehicles (UAVs) and under variable light intensities. Portulacaria afra is the target species for the restoration of Albany Subtropical Thicket vegetation, endemic to South Africa, where canopy cover is challenging to measure due to the dense, tangled structure of this vegetation. The automated classification strategy presented here is widely transferable to restoration monitoring as its application does not require any knowledge of the CNN model or specialist training, and can be applied to imagery generated by a range of UAV models. This will reduce the sampling effort required to track restoration trajectories in space and time, contributing to more effective management of restoration sites, and promoting collaboration between scientists, practitioners and landowners.


Assuntos
Ecossistema , Dispositivos Aéreos não Tripulados , Tecnologia de Sensoriamento Remoto , Redes Neurais de Computação , Algoritmos
3.
PeerJ ; 9: e12176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707927

RESUMO

This study examines the soil bacterial diversity in the Portulacaria afra-dominated succulent thicket vegetation of the Albany Subtropical Thicket biome; this biome is endemic to South Africa. The aim of the study was to compare the soil microbiomes between intact and degraded zones in the succulent thicket and identify environmental factors which could explain the community compositions. Bacterial diversity, using 16S amplicon sequencing, and soil physicochemistry were compared across three zones: intact (undisturbed and vegetated), degraded (near complete removal of vegetation due to browsing) and restored (a previously degraded area which was replanted approximately 11 years before sampling). Amplicon Sequence Variant (ASV) richness was similar across the three zones, however, the bacterial community composition and soil physicochemistry differed across the intact and degraded zones. We identified, via correlation, the potential drivers of microbial community composition as soil density, pH and the ratio of Ca to Mg. The restored zone was intermediate between the intact and degraded zones. The differences in the microbial communities appeared to be driven by the presence of plants, with plant-associated taxa more common in the intact zone. The dominant taxa in the degraded zone were cosmopolitan organisms, that have been reported globally in a wide variety of habitats. This study provides baseline information on the changes of the soil bacterial community of a spatially restricted and threatened biome. It also provides a starting point for further studies on community composition and function concerning the restoration of degraded succulent thicket ecosystems.

4.
PeerJ ; 8: e8980, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351786

RESUMO

Restoration of subtropical thicket in South Africa using the plant Portulacaria afra (an ecosystem engineer) has been hampered, in part, by selecting sites that are frost prone-this species is intolerant of frost. Identifying parts of the landscape that are exposed to frost is often challenging. Our aim is to calibrate an existing cold-air pooling (CAP) model to predict where frost is likely to occur in the valleys along the sub-escarpment lowlands (of South Africa) where thicket is dominant. We calibrated this model using two valleys that have been monitored during frost events. To test the calibrated CAP model, model predictions of frost-occurrence for six additional valleys were assessed using a qualitative visual comparison of existing treelines in six valleys-we observe a strong visual match between the predicted frost and frost-free zones with the subtropical thicket (frost-intolerant) and Nama-Karoo shrubland (frost-tolerant) treelines. In addition, we tested the model output using previously established transplant experiments; ∼300 plots planted with P. afra (known as the Thicket-Wide Plots) were established across the landscape-without consideration of frost-to assess the potential factors influencing the survival and growth of P. afra. Here we use a filtered subset of these plots (n = 70), and find that net primary production of P. afra was significantly lower in plots that the model predicted to be within the frost zone. We suggest using this calibrated CAP model as part of the site selection process when restoring subtropical thicket in sites that lie within valleys-avoiding frost zones will greatly increase the likelihood of restoration success.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...