Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38255739

RESUMO

Seryl-tRNA synthetases (SerRSs), members of the aminoacyl-tRNA synthetase family, interact with diverse proteins, enabling SerRSs to enhance their role in the translation of the genetic message or to perform alternative functions in cellular processes beyond translation. Atypical archaeal SerRS interacts with arginyl-tRNA synthetase and proteins of the ribosomal P-stalk to optimize translation through tRNA channeling. The complex between yeast SerRS and peroxin Pex21p provides a connection between translation and peroxisome function. The partnership between Arabidopsis SerRS and BEN1 indicates a link between translation and brassinosteroid metabolism and may be relevant in plant stress response mechanisms. In Drosophila, the unusual heterodimeric mitochondrial SerRS coordinates mitochondrial translation and replication via interaction with LON protease. Evolutionarily conserved interactions of yeast and human SerRSs with m3C32 tRNA methyltransferases indicate coordination between tRNA modification and aminoacylation in the cytosol and mitochondria. Human cytosolic SerRS is a cellular hub protein connecting translation to vascular development, angiogenesis, lipogenesis, and telomere maintenance. When translocated to the nucleus, SerRS acts as a master negative regulator of VEGFA gene expression. SerRS alone or in complex with YY1 and SIRT2 competes with activating transcription factors NFκB1 and c-Myc, resulting in balanced VEGFA expression important for proper vascular development and angiogenesis. In hypoxia, SerRS phosphorylation diminishes its binding to the VEGFA promoter, while the lack of nutrients triggers SerRS glycosylation, reducing its nuclear localization. Additionally, SerRS binds telomeric DNA and cooperates with the shelterin protein POT1 to regulate telomere length and cellular senescence. As an antitumor and antiangiogenic factor, human cytosolic SerRS appears to be a promising drug target and therapeutic agent for treating cancer, cardiovascular diseases, and possibly obesity and aging.

2.
FEBS Lett ; 597(24): 3114-3124, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38015921

RESUMO

Isoleucyl-tRNA synthetase (IleRS) links isoleucine to cognate tRNA via the Ile-AMP intermediate. Non-cognate valine is often mistakenly recognized as the IleRS substrate; therefore, to maintain the accuracy of translation, IleRS hydrolyzes Val-AMP within the synthetic site (pre-transfer editing). As this activity is not efficient enough, Val-tRNAIle is formed and hydrolyzed in the distant post-transfer editing site. A strictly conserved synthetic site residue Gly56 was previously shown to safeguard Ile-to-Val discrimination during aminoacyl (aa)-AMP formation. Here, we show that the Gly56Ala variant lost its specificity in pre-transfer editing, confirming that this residue ensures the selectivity of all synthetic site reactions. Moreover, we found that the Gly56Ala mutation affects IleRS interaction with aa-tRNA likely by disturbing tRNA-dependent communication between the two active sites.


Assuntos
Escherichia coli , Isoleucina-tRNA Ligase , Isoleucina-tRNA Ligase/genética , Isoleucina-tRNA Ligase/química , Isoleucina-tRNA Ligase/metabolismo , Escherichia coli/genética , RNA de Transferência/genética , Valina , Domínio Catalítico , Isoleucina , Especificidade por Substrato , Sítios de Ligação
3.
J Mol Biol ; 430(1): 1-16, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29111343

RESUMO

The intrinsic editing capacities of aminoacyl-tRNA synthetases ensure a high-fidelity translation of the amino acids that possess effective non-cognate aminoacylation surrogates. The dominant error-correction pathway comprises deacylation of misaminoacylated tRNA within the aminoacyl-tRNA synthetase editing site. To assess the origin of specificity of Escherichia coli leucyl-tRNA synthetase (LeuRS) against the cognate aminoacylation product in editing, we followed binding and catalysis independently using cognate leucyl- and non-cognate norvalyl-tRNALeu and their non-hydrolyzable analogues. We found that the amino acid part (leucine versus norvaline) of (mis)aminoacyl-tRNAs can contribute approximately 10-fold to ground-state discrimination at the editing site. In sharp contrast, the rate of deacylation of leucyl- and norvalyl-tRNALeu differed by about 104-fold. We further established the critical role for the A76 3'-OH group of the tRNALeu in post-transfer editing, which supports the substrate-assisted deacylation mechanism. Interestingly, the abrogation of the LeuRS specificity determinant threonine 252 did not improve the affinity of the editing site for the cognate leucine as expected, but instead substantially enhanced the rate of leucyl-tRNALeu hydrolysis. In line with that, molecular dynamics simulations revealed that the wild-type enzyme, but not the T252A mutant, enforced leucine to adopt the side-chain conformation that promotes the steric exclusion of a putative catalytic water. Our data demonstrated that the LeuRS editing site exhibits amino acid specificity of kinetic origin, arguing against the anticipated prominent role of steric exclusion in the rejection of leucine. This feature distinguishes editing from the synthetic site, which relies on ground-state discrimination in amino acid selection.


Assuntos
Aminoacil-tRNA Sintetases/genética , Leucina-tRNA Ligase/genética , Aminoacil-RNA de Transferência/genética , Especificidade por Substrato/genética , Acilação/genética , Aminoácidos/genética , Aminoacilação/genética , Sítios de Ligação/genética , Escherichia coli/genética , Hidrólise , Cinética
4.
ACS Cent Sci ; 3(1): 73-80, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28149956

RESUMO

Fluorine being not substantially present in the chemistry of living beings is an attractive element in tailoring novel chemical, biophysical, and pharmacokinetic properties of peptides and proteins. The hallmark of ribosome-mediated artificial amino acid incorporation into peptides and proteins is a broad substrate tolerance, which is assumed to rely on the absence of evolutionary pressure for efficient editing of artificial amino acids. We used the well-characterized editing proficient isoleucyl-tRNA synthetase (IleRS) from Escherichia coli to investigate the crosstalk of aminoacylation and editing activities against fluorinated amino acids. We show that translation of trifluoroethylglycine (TfeGly) into proteins is prevented by hydrolysis of TfeGly-tRNAIle in the IleRS post-transfer editing domain. The remarkable observation is that dissociation of TfeGly-tRNAIle from IleRS is significantly slowed down. This finding is in sharp contrast to natural editing reactions by tRNA synthetases wherein fast editing rates for the noncognate substrates are essential to outcompete fast aa-tRNA dissociation rates. Using a post-transfer editing deficient mutant of IleRS (IleRSAla10), we were able to achieve ribosomal incorporation of TfeGly in vivo. Our work expands the knowledge of ribosome-mediated artificial amino acid translation with detailed analysis of natural editing function against an artificial amino acid providing an impulse for further systematic investigations and engineering of the translation and editing of unusual amino acids.

5.
J Biol Chem ; 291(16): 8618-31, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26921320

RESUMO

Isoleucyl-tRNA synthetase (IleRS) is unusual among aminoacyl-tRNA synthetases in having a tRNA-dependent pre-transfer editing activity. Alongside the typical bacterial IleRS (such as Escherichia coli IleRS), some bacteria also have the enzymes (eukaryote-like) that cluster with eukaryotic IleRSs and exhibit low sensitivity to the antibiotic mupirocin. Our phylogenetic analysis suggests that the ileS1 and ileS2 genes of contemporary bacteria are the descendants of genes that might have arisen by an ancient duplication event before the separation of bacteria and archaea. We present the analysis of evolutionary constraints of the synthetic and editing reactions in eukaryotic/eukaryote-like IleRSs, which share a common origin but diverged through adaptation to different cell environments. The enzyme from the yeast cytosol exhibits tRNA-dependent pre-transfer editing analogous to E. coli IleRS. This argues for the presence of this proofreading in the common ancestor of both IleRS types and an ancient origin of the synthetic site-based quality control step. Yet surprisingly, the eukaryote-like enzyme from Streptomyces griseus IleRS lacks this capacity; at the same time, its synthetic site displays the 10(3)-fold drop in sensitivity to antibiotic mupirocin relative to the yeast enzyme. The discovery that pre-transfer editing is optional in IleRSs lends support to the notion that the conserved post-transfer editing domain is the main checkpoint in these enzymes. We substantiated this by showing that under error-prone conditions S. griseus IleRS is able to rescue the growth of an E. coli lacking functional IleRS, providing the first evidence that tRNA-dependent pre-transfer editing in IleRS is not essential for cell viability.


Assuntos
Isoleucina-tRNA Ligase/metabolismo , RNA de Transferência/metabolismo , Streptomyces griseus/enzimologia , Escherichia coli/enzimologia , Escherichia coli/genética , Teste de Complementação Genética , Isoleucina-tRNA Ligase/genética , RNA de Transferência/genética , Streptomyces griseus/genética
6.
Biochemistry ; 53(39): 6189-98, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25207837

RESUMO

The accurate expression of genetic information relies on the fidelity of amino acid-tRNA coupling by aminoacyl-tRNA synthetases (aaRS). When the specificity against structurally similar noncognate amino acids in the synthetic reaction does not support a threshold fidelity level for translation, the aaRS employ intrinsic hydrolytic editing to correct errors in aminoacylation. Escherichia coli isoleucyl-tRNA synthetase (EcIleRS) is a class I aaRS that is notable for its use of tRNA-dependent pretransfer editing to hydrolyze noncognate valyl-adenylate prior to aminoacyl-tRNA formation. On the basis of the finding that IleRS possessing an inactivated post-transfer editing domain is still capable of robust tRNA-dependent editing, we have recently proposed that the pretransfer editing activity resides within the synthetic site. Here we apply an improved methodology that allows quantitation of the AMP fraction that arises particularly from tRNA-dependent aa-AMP hydrolysis. By this approach, we demonstrate that tRNA-dependent pretransfer editing accounts for nearly one-third of the total proofreading by EcIleRS and that a highly conserved tyrosine within the synthetic site modulates both editing and aminoacylation. Therefore, synthesis of aminoacyl-tRNA and hydrolysis of aminoacyl-adenylates employ overlapping amino acid determinants. We suggest that this overlap hindered the evolution of synthetic site-based pretransfer editing as the predominant proofreading pathway, because that activity is difficult to accommodate in the context of efficient aminoacyl-tRNA synthesis. Instead, the acquisition of a spatially separate domain dedicated to post-transfer editing alone allowed for the development of a powerful deacylation machinery that effectively competes with dissociation of misacylated tRNAs.


Assuntos
Proteínas de Escherichia coli/metabolismo , Isoleucina-tRNA Ligase/metabolismo , Edição de RNA , RNA de Transferência/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Vias Biossintéticas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidrólise , Isoleucina-tRNA Ligase/química , Isoleucina-tRNA Ligase/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência de Isoleucina/química , RNA de Transferência de Isoleucina/genética , RNA de Transferência de Isoleucina/metabolismo , Homologia de Sequência de Aminoácidos , Aminoacilação de RNA de Transferência , Tirosina/genética , Tirosina/metabolismo
7.
Arch Biochem Biophys ; 529(2): 122-30, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23228595

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) catalyze the attachment of amino acids to their cognate tRNAs to establish the genetic code. To obtain the high degree of accuracy that is observed in translation, these enzymes must exhibit strict substrate specificity for their cognate amino acids and tRNAs. We studied the requirements for tRNA(Ser) recognition by maize cytosolic seryl-tRNA synthetase (SerRS). The enzyme efficiently recognized bacterial and eukaryotic tRNAs(Ser) indicating that it can accommodate various types of tRNA(Ser) structures. Discriminator base G73 is crucial for recognition by cytosolic SerRS. Although cytosolic SerRS efficiently recognized bacterial tRNAs(Ser), it is localized exclusively in the cytosol. The fidelity of maize cytosolic and dually targeted organellar SerRS with respect to amino acid recognition was compared. Organellar SerRS exhibited higher discrimination against tested non-cognate substrates as compared with cytosolic counterpart. Both enzymes showed pre-transfer editing activity implying their high overall accuracy. The contribution of various reaction pathways in the pre-transfer editing reactions by maize enzymes were different and dependent on the non-cognate substrate. The fidelity mechanisms of maize organellar SerRS, high discriminatory power and proofreading, indicate that aaRSs in general may play an important role in translational quality control in plant mitochondria and chloroplasts.


Assuntos
Aminoácidos/química , Aminoácidos/metabolismo , Serina-tRNA Ligase/química , Serina-tRNA Ligase/metabolismo , Zea mays/enzimologia , Ativação Enzimática , Especificidade por Substrato
8.
Biochimie ; 93(10): 1761-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21704670

RESUMO

Seryl-tRNA synthetases (SerRS) covalently attach serine to cognate tRNA(Ser). Atypical SerRSs, considerably different from canonical enzymes, have been found in methanogenic archaea. A crystal structure of methanogenic-type SerRS revealed a motif within the active site (serine ordering loop; SOL), which undergoes a notable induced-fit rearrangement during serine binding. The loop rearranges from a disordered conformation in the unliganded enzyme, to an ordered structure comprising an α-helix followed by a loop. We performed kinetic and thermodynamic analyses of SerRS variants to establish the role of the SOL in serylation. Thermodynamic data confirmed a linkage between binding of serine and α-helix formation, previously described by the crystallographic analysis. The ability of the SOL to adopt the observed secondary structure was recognized as essential for serine activation. Mutation of Gln400, which according to the structural data establishes the main connection between the serine and the SOL, produced only modest kinetic effects. Kinetic data offer new insights into the coupling of the conformational change with active site assembly. Productive positioning of the SOL may be driven by the interaction between Trp396 and the serine α-amino group. Rapid kinetics reveals that His250, a non-SOL residue, is essential for transfer of serine to tRNA. Modeling data established that accommodation of the tRNA within the active site may require movement of the SOL. This would enable His250 to assist in productive positioning of the 3'-end of the tRNA for the aminoacyl transfer. Thus, the rearrangements of the SOL conformationally adjust the active site for both reaction steps.


Assuntos
Serina-tRNA Ligase/química , Serina-tRNA Ligase/metabolismo , Sítios de Ligação , Calorimetria , Domínio Catalítico , Cromatografia por Troca Iônica , Estrutura Secundária de Proteína , Serina-tRNA Ligase/genética , Especificidade por Substrato , Termodinâmica
9.
J Biol Chem ; 285(31): 23799-809, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20498377

RESUMO

Hydrolytic editing activities are present in aminoacyl-tRNA synthetases possessing reduced amino acid discrimination in the synthetic reactions. Post-transfer hydrolysis of misacylated tRNA in class I editing enzymes occurs in a spatially separate domain inserted into the catalytic Rossmann fold, but the location and mechanisms of pre-transfer hydrolysis of misactivated amino acids have been uncertain. Here, we use novel kinetic approaches to distinguish among three models for pre-transfer editing by Escherichia coli isoleucyl-tRNA synthetase (IleRS). We demonstrate that tRNA-dependent hydrolysis of noncognate valyl-adenylate by IleRS is largely insensitive to mutations in the editing domain of the enzyme and that noncatalytic hydrolysis after release is too slow to account for the observed rate of clearing. Measurements of the microscopic rate constants for amino acid transfer to tRNA in IleRS and the related valyl-tRNA synthetase (ValRS) further suggest that pre-transfer editing in IleRS is an enzyme-catalyzed activity residing in the synthetic active site. In this model, the balance between pre-transfer and post-transfer editing pathways is controlled by kinetic partitioning of the noncognate aminoacyl-adenylate. Rate constants for hydrolysis and transfer of a noncognate intermediate are roughly equal in IleRS, whereas in ValRS transfer to tRNA is 200-fold faster than hydrolysis. In consequence, editing by ValRS occurs nearly exclusively by post-transfer hydrolysis in the editing domain, whereas in IleRS both pre- and post-transfer editing are important. In both enzymes, the rates of amino acid transfer to tRNA are similar for cognate and noncognate aminoacyl-adenylates, providing a significant contrast with editing DNA polymerases.


Assuntos
Aminoacil-tRNA Sintetases/química , RNA de Transferência/química , Catálise , Domínio Catalítico , Escherichia coli/enzimologia , Hidrólise , Cinética , Modelos Moleculares , Conformação Molecular , Mutação , Ácidos Nucleicos/química , Estrutura Terciária de Proteína , Edição de RNA , Valina/química , Valina-tRNA Ligase/química
10.
Plant Cell Rep ; 27(7): 1157-68, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18392626

RESUMO

Aminoacyl-tRNA synthetases (AARSs) play a critical role in translation and are thus required in three plant protein-synthesizing compartments: cytosol, mitochondria and plastids. A systematic study had previously shown extensive sharing of organellar AARSs from Arabidopsis thaliana, mostly between mitochondria and chloroplasts. However, distribution of AARSs from monocot species, such as maize, has never been experimentally investigated. Here we demonstrate dual targeting of maize seryl-tRNA synthetase, SerZMo, into both mitochondria and chloroplasts using combination of complementary methods, including in vitro import assay, transient expression analysis of green fluorescent protein (GFP) fusions and immunodetection. We also show that SerZMo dual localization is established by the virtue of an ambiguous targeting peptide. Full-length SerZMo protein fused to GFP is targeted to chloroplast stromules, indicating that SerZMo protein performs its function in plastid stroma. The deletion mutant lacking N-terminal region of the ambiguous SerZMo targeting peptide was neither targeted into mitochondria nor chloroplasts, indicating the importance of this region in both mitochondrial and chloroplastic import.


Assuntos
Cloroplastos/metabolismo , Mitocôndrias/metabolismo , Serina-tRNA Ligase/metabolismo , Zea mays/metabolismo , Sequência de Aminoácidos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina-tRNA Ligase/genética , Zea mays/enzimologia , Zea mays/genética
11.
J Mol Biol ; 361(1): 128-39, 2006 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16822522

RESUMO

Seryl-tRNA synthetases (SerRSs) from methanogenic archaea possess distinct evolutionary origin and show minimal sequence similarity with counterparts from bacteria, eukaryotes and other archaea. Here we show that SerRS from yeast Saccharomyces cerevisiae and archaeon Methanococcus maripaludis (ScSerRS and MmSerRS, respectively) display significantly different ability to serylate heterologous tRNA(Ser). Recognition in yeast was shown to be more stringent than in archaeon. While cross-aminoacylation of M. maripaludis tRNA(Ser) (MmtRNA(Ser)) by yeast SerRS barely occurs, yeast tRNA(Ser) (SctRNA(Ser)) was shown to be a good substrate for heterologous MmSerRS. To investigate the contribution of different tRNA regions for the recognition by yeast and archaeal SerRS, chimeric tRNAs bearing separated domains of SctRNA(Ser) in MmtRNA(Ser) framework were produced by in vitro transcription and subjected to kinetic and gel mobility shift analysis with both enzymes. Generally, the recognition in M. maripaludis seems to be relatively relaxed toward tertiary elements of tRNA(Ser) structure and relies on the direct recognition of identity nucleotides. On the other hand, expression of tRNA(Ser) identity elements in yeast seems to be more sensitive toward surrounding sequence context. In both systems variable arm of tRNA was recognized as a major identity region with a strong influence on SerRS:tRNA binding. Acceptor domain of SctRNA(Ser) was also shown to be important for serylation in yeast. We propose that cognate interactions between N-terminal domain of yeast SerRS and variable region of SctRNA(Ser) place the acceptor stem into the enzyme's active site and lead to increased affinity toward serine and efficient serylation of tRNA. The same effect was not observed in M. maripaludis. Unlike its yeast counterpart, MmSerRS forms only one type of covalent complex with MmtRNA(Ser), regardless of the tRNA/SerRS molar ratio. Stoichiometry of the complex, one tRNA per dimeric SerRS, was revealed by mass spectrometry. Our studies indicate that different SerRS:tRNA recognition mode is utilized by these two systems.


Assuntos
Embaralhamento de DNA , Mathanococcus/genética , RNA de Transferência de Serina/genética , Recombinação Genética , Saccharomyces cerevisiae/genética , Sequência de Bases , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...