Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571253

RESUMO

Linoleic acid (LA) is an essential omega-6 polyunsaturated fatty acid (PUFA) derived from the diet. Sebocytes, whose primary role is to moisturise the skin, process free fatty acids (FFAs) to produce the lipid-rich sebum. Importantly, like other sebum components such as palmitic acid (PA), LA and its derivative arachidonic acid (AA) are known to modulate sebocyte functions. Given the different roles of PA, LA and AA in skin biology, the aim of this study was to assess the specificity of sebocytes for LA and to dissect the different roles of LA and AA in regulating sebocyte functions. Using RNA sequencing, we confirmed that gene expression changes in LA-treated sebocytes were largely distinct from those induced by PA. LA, but not AA, regulated the expression of genes related to cholesterol biosynthesis, androgen and nuclear receptor signalling, keratinisation, lipid homeostasis and differentiation. In contrast, a set of mostly down-regulated genes involved in lipid metabolism and immune functions overlapped in LA- and AA-treated sebocytes. Lipidomic analyses revealed that the changes in the lipid profile of LA-treated sebocytes were more pronounced than those of AA-treated sebocytes, suggesting that LA may serve not only as a precursor of AA but also as a potent regulator of sebaceous lipogenesis, which may not only influence the gene expression profile but also have further specific biological relevance. In conclusion, we have shown that sebocytes are able to respond selectively to different lipid stimuli and that LA-induced effects can be both AA-dependent and independent. Our findings allow for the consideration of LA application in the therapy of sebaceous gland-associated inflammatory skin diseases such as acne, where lipid modulation and selective targeting of AA metabolism are potential treatment options.


Assuntos
Ácido Linoleico , Ácido Palmítico , Ácido Palmítico/farmacologia , Ácido Palmítico/metabolismo , Ácido Araquidônico/farmacologia , Ácido Araquidônico/metabolismo , Ácido Linoleico/farmacologia , Ácido Linoleico/metabolismo , Glândulas Sebáceas/metabolismo , Sebo , Lipogênese
2.
J Mol Med (Berl) ; 101(8): 987-999, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37351597

RESUMO

Poly(ADP-ribose) polymerase 2 (PARP2) alongside PARP1 are responsible for the bulk of cellular PARP activity, and they were first described as DNA repair factors. However, research in past decades implicated PARPs in biological functions as diverse as the regulation of cellular energetics, lipid homeostasis, cell death, and inflammation. PARP activation was described in Th2-mediated inflammatory processes, but studies focused on the role of PARP1, while we have little information on PARP2 in inflammatory regulation. In this study, we assessed the role of PARP2 in a Th17-mediated inflammatory skin condition, psoriasis. We found that PARP2 mRNA expression is increased in human psoriatic lesions. Therefore, we studied the functional consequence of decreased PARP2 expression in murine and cellular human models of psoriasis. We observed that the deletion of PARP2 attenuated the imiquimod-induced psoriasis-like dermatitis in mice. Silencing of PARP2 in human keratinocytes prevented their hyperproliferation, maintained their terminal differentiation, and reduced their production of inflammatory mediators after treatment with psoriasis-mimicking cytokines IL17A and TNFα. Underlying these observations, we found that aromatase was induced in the epidermis of PARP2 knock-out mice and in PARP2-deficient human keratinocytes, and the resulting higher estradiol production suppressed NF-κB activation, and hence, inflammation in keratinocytes. Steroidogenic alterations have previously been described in psoriasis, and we extend these observations by showing that aromatase expression is reduced in psoriatic lesions. Collectively, our data identify PARP2 as a modulator of estrogen biosynthesis by epidermal keratinocytes that may be relevant in Th17 type inflammation. KEY MESSAGES : PARP2 mRNA expression is increased in lesional skin of psoriasis patients. PARP2 deletion in mice attenuated IMQ-induced psoriasis-like dermatitis. NF-κB activation is suppressed in PARP2-deficient human keratinocytes. Higher estradiol in PARP2-deficient keratinocytes conveys anti-inflammatory effect.


Assuntos
Dermatite , Psoríase , Animais , Humanos , Camundongos , Aromatase/metabolismo , Dermatite/metabolismo , Dermatite/patologia , Modelos Animais de Doenças , Imiquimode/efeitos adversos , Inflamação/metabolismo , Queratinócitos/metabolismo , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Psoríase/genética , Psoríase/metabolismo , RNA Mensageiro/metabolismo , Pele/metabolismo
3.
J Eur Acad Dermatol Venereol ; 37(7): 1415-1425, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36971768

RESUMO

BACKGROUND: Acne vulgaris provides a unique disease setting in which a prominent skin inflammation is coupled with the overproduction of lipid-rich sebum. OBJECTIVES: Our goal was to evaluate the expression of barrier molecules in papular acne skin samples obtained from untreated patients and compare those to the results of healthy and of papulopustular rosacea-involved ones at the mRNA and protein levels. In addition, we aimed to assess the effects of various sebum composing lipids on the expression of proteins involved in barrier formation in keratinocytes. METHODS: Available microarray data sets of papular acne and papulopustular rosacea-affected skin samples were re-analysed with a focus on epidermal barrier-related pathways. Immunohistochemistry was performed to detect barrier molecules in the interfollicular regions of human acne and healthy skin samples. Protein levels of barrier-related genes were measured by western blot in samples of HaCaT keratinocytes treated with selected lipids. RESULTS: Meta-analysis of whole transcriptome data sets revealed that barrier-related pathways are significantly affected in acne vulgaris skin samples. While an altered expression of key molecules in maintaining barrier functions such as filaggrin, keratin 1, involucrin, desmoglein 1, kallikrein 5 and 7, was also observed at the protein levels, our data demonstrated that sebum composing lipids may selectively modify the levels of epidermal barrier-related molecules. CONCLUSIONS: Our results suggest that although not as prominently as in the dry papulopustular rosacea skin, the epidermal barrier in the interfollicular region may be damaged also in the lipid-rich skin samples of papular acne. Furthermore, our findings indicating diverse regulatory effects of various sebum lipids on the expression of barrier molecules in keratinocytes suggest, that they may influence the moisturization of the skin as well. Altogether, our findings could have implications in the development of sebum-modulating anti-acne therapies and even in the care of symptom-free skin.


Assuntos
Acne Vulgar , Rosácea , Humanos , Acne Vulgar/metabolismo , Sebo/metabolismo , Queratinócitos , Lipídeos
4.
Biomedicines ; 11(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672635

RESUMO

Hidradenitis suppurativa (HS) is a Th1/17-driven inflammatory skin disease of the apocrine gland-rich (AGR) skin regions, where keratinocytes seem to be the crucial drivers of the initial pathogenic steps. However, the possible role of permeability barrier alteration in activating keratinocytes during HS development has not been clarified. We compared the major permeability barrier elements of non-lesional HS (HS-NL; n = 10) and lesional HS (HS-L; n = 10) skin with healthy AGR regions (n = 10) via RT-qPCR and immunohistochemistry. Stratum corneum components related to cornified envelope formation, corneocyte desquamation and (corneo)desmosome organization were analyzed along with tight junction molecules and barrier alarmins. The permeability barrier function was also investigated with transepidermal water loss (TEWL) measurements (n = 16). Junction structures were also visualized using confocal microscopy. At the gene level, none of the investigated molecules were significantly altered in HS-NL skin, while 11 molecules changed significantly in HS-L skin versus control. At the protein level, the investigated molecules were similarly expressed in HS-NL and AGR skin. In HS-L skin, only slight changes were detected; however, differences did not show a unidirectional alteration, as KRT1 and KLK5 were detected in decreased levels, and KLK7, KRT6 and DSG1 in increased levels. No significant differences in TEWL or the expression of junction structures were assessed. Our findings suggest that the permeability barrier is not significantly damaged in HS skin and permeability barrier alterations are not the driver factors of keratinocyte activation in this disease.

5.
Sci Rep ; 11(1): 21510, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728702

RESUMO

Activation of Toll-like receptors (TLR) 1/2 and 4 are central in inducing inflammation in sebocytes by regulating the expression of protein coding mRNAs, however the microRNA (miRNA) profile in response to TLR activation and thus the possible role of miRNAs in modulating sebocyte functions has not been elucidated. In this work we identified miR-146a to have the highest induction in the TLR1/2 and 4 activated SZ95 sebocytes and found that its increased levels led to the down-regulation of IL-8 secretion, decreased the chemoattractant potential and stimulated the proliferation of sebocytes. Assessing the gene expression profile of SZ95 sebocytes treated with a miR-146a inhibitor, the induction of GNG7 was one of the highest, while when cells were treated with a miR-146a mimic, the expression of GNG7 was down-regulated. These findings correlated with our in situ hybridization results, that compared with control, miR-146a showed an increased, while GNG7 a decreased expression in sebaceous glands of acne samples. Further studies revealed, that when inhibiting the levels of GNG7 in SZ95 sebocytes, cells increased their lipid content and decreased their proliferation. Our findings suggest, that miR-146a could be a potential player in acne pathogenesis by regulating inflammation, inducing proliferation and, through the indirect down-regulation of GNG7, promoting the lipid production of sebocytes.


Assuntos
Acne Vulgar/patologia , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Inflamação/patologia , Lipídeos/análise , Lipogênese , MicroRNAs/genética , Glândulas Sebáceas/patologia , Acne Vulgar/genética , Acne Vulgar/imunologia , Acne Vulgar/metabolismo , Adulto , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Subunidades gama da Proteína de Ligação ao GTP/genética , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Masculino , RNA-Seq , Glândulas Sebáceas/imunologia , Glândulas Sebáceas/metabolismo , Receptor 1 Toll-Like/genética , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
6.
Front Immunol ; 12: 600017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025636

RESUMO

Epidermal growth factor (EGF) acts as a paracrine and autocrine mediator of cell proliferation and differentiation in various types of epithelial cells, such as sebocytes, which produce the lipid-rich sebum to moisturize the skin. However, sebum lipids via direct contact and by penetrating through the epidermis may have regulatory roles on epidermal and dermal cells as well. As EGF receptor (EGFR) is expressed throughout the proliferating and the lipid-producing layers of sebaceous glands (SGs) in healthy and acne-involved skin, we investigated the effect of EGF on SZ95 sebocytes and how it may alter the changes induced by palmitic acid (PA), a major sebum component with bioactive roles. We found that EGF is not only a potent stimulator of sebocyte proliferation, but also induces the secretion of interleukin (IL)6 and down-regulates the expression of genes involved in steroid and retinoid metabolism. Importantly, when applied in combination with PA, the PA-induced lipid accumulation was decreased and the cells secreted increased IL6 levels. Functional clustering of the differentially regulated genes in SZ95 sebocytes treated with EGF, PA or co-treated with EGF+PA further confirmed that EGF may be a potent inducer of hyperproliferative/inflammatory pathways (IL1 signaling), an effect being more pronounced in the presence of PA. However, while a group of inflammatory genes was up-regulated significantly in EGF+PA co-treated sebocytes, PA treatment in the absence of EGF, regulated genes only related to cell homeostasis. Meta-analysis of the gene expression profiles of whole acne tissue samples and EGF- and EGF+PA -treated SZ95 sebocytes showed that the EGF+PA co-activation of sebocytes may also have implications in disease. Altogether, our results reveal that PA-induced lipid accumulation and inflammation can be modulated by EGF in sebocytes, which also highlights the need for system biological approaches to better understand sebaceous (immuno)biology.


Assuntos
Fator de Crescimento Epidérmico/imunologia , Células Epiteliais/imunologia , Ácido Palmítico/farmacologia , Glândulas Sebáceas/imunologia , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/patologia , Interleucina-6/imunologia , Ácido Palmítico/efeitos adversos , Glândulas Sebáceas/patologia
7.
Int J Mol Sci ; 22(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535700

RESUMO

Multidisciplinary research from the last few decades has revealed that Factor XIII subunit A (FXIII-A) is not only involved in blood coagulation, but may have roles in various diseases. Here, we aim to summarize data from studies involving patients with mutations in the F13A1 gene, performed in FXIII-A knock-out mice models, clinical and histological studies assessing correlations between diseases severity and FXIII-A levels, as well as from in vitro experiments. By providing a complex overview on its possible role in wound healing, chronic inflammatory bowel diseases, athe-rosclerosis, rheumatoid arthritis, chronic inflammatory lung diseases, chronic rhinosinusitis, solid tumors, hematological malignancies, and obesity, we also demonstrate how the field evolved from using FXIII-A as a marker to accept and understand its active role in inflammatory and malignant diseases.


Assuntos
Artrite Reumatoide/metabolismo , Aterosclerose/metabolismo , Fator XIIIa/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Pneumopatias/metabolismo , Neoplasias/metabolismo , Obesidade/metabolismo , Sinusite/metabolismo , Animais , Coagulação Sanguínea , Doença Crônica , Fator XIIIa/genética , Humanos , Inflamação , Camundongos , Camundongos Knockout , Mutação , Polimorfismo Genético , Microambiente Tumoral , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...