Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496520

RESUMO

New agents are needed that selectively kill cancer cells without harming normal tissues. The TRAIL ligand and its receptors, DR5 and DR4, exhibit cancer-selective toxicity, but TRAIL analogs or agonistic antibodies targeting these receptors have not received FDA approval for cancer therapy. Small molecules for activating DR5 or DR4 independently of protein ligands may bypass some of the pharmacological limitations of these protein drugs. Previously described Disulfide bond Disrupting Agents (DDAs) activate DR5 by altering its disulfide bonding through inhibition of the Protein Disulfide Isomerases (PDIs) ERp44, AGR2, and PDIA1. Work presented here extends these findings by showing that disruption of single DR5 disulfide bonds causes high-level DR5 expression, disulfide-mediated clustering, and activation of Caspase 8-Caspase 3 mediated pro-apoptotic signaling. Recognition of the extracellular domain of DR5 by various antibodies is strongly influenced by the pattern of DR5 disulfide bonding, which has important implications for the use of agonistic DR5 antibodies for cancer therapy. Disulfide-defective DR5 mutants do not activate the ER stress response or stimulate autophagy, indicating that these DDA-mediated responses are separable from DR5 activation and pro-apoptotic signaling. Importantly, other ER stressors, including Thapsigargin and Tunicamycin also alter DR5 disulfide bonding in various cancer cell lines and in some instances, DR5 mis-disulfide bonding is potentiated by overriding the Integrated Stress Response (ISR) with inhibitors of the PERK kinase or the ISR inhibitor ISRIB. These observations indicate that the pattern of DR5 disulfide bonding functions as a sensor of ER stress and serves as an effector of proteotoxic stress by driving extrinsic apoptosis independently of extracellular ligands.

2.
Front Pharmacol ; 12: 792600, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095503

RESUMO

Tranexamic Acid (TA) is a clinically used antifibrinolytic agent that acts as a Lys mimetic to block binding of Plasminogen with Plasminogen activators, preventing conversion of Plasminogen to its proteolytically activated form, Plasmin. Previous studies suggested that TA may exhibit anticancer activity by blockade of extracellular Plasmin formation. Plasmin-mediated cleavage of the CDCP1 protein may increase its oncogenic functions through several downstream pathways. Results presented herein demonstrate that TA blocks Plasmin-mediated excision of the extracellular domain of the oncoprotein CDCP1. In vitro studies indicate that TA reduces the viability of a broad array of human and murine cancer cell lines, and breast tumor growth studies demonstrate that TA reduces cancer growth in vivo. Based on the ability of TA to mimic Lys and Arg, we hypothesized that TA may perturb multiple processes that involve Lys/Arg-rich protein sequences, and that TA may alter intracellular signaling pathways in addition to blocking extracellular Plasmin production. Indeed, TA-mediated suppression of tumor cell viability is associated with multiple biochemical actions, including inhibition of protein synthesis, reduced activating phosphorylation of STAT3 and S6K1, decreased expression of the MYC oncoprotein, and suppression of Lys acetylation. Further, TA inhibited uptake of Lys and Arg by cancer cells. These findings suggest that TA or TA analogs may serve as lead compounds and inspire the production of new classes of anticancer agents that function by mimicking Lys and Arg.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...