Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0293834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37917788

RESUMO

Sugarcane is one of the major agricultural crops with high economic importance in Thailand. Periodic waterlogging has a long-term negative effect on sugarcane development, soil properties, and microbial diversity, impacting overall sugarcane production. Yet, the microbial structure in periodically waterlogged sugarcane fields across soil compartments and growth stages in Thailand has not been documented. This study investigated soil and rhizosphere microbial communities in a periodic waterlogged field in comparison with a normal field in a sugarcane plantation in Ratchaburi, Thailand, using 16S rRNA and ITS amplicon sequencing. Alpha diversity analysis revealed comparable values in periodic waterlogged and normal fields across all growth stages, while beta diversity analysis highlighted distinct microbial community profiles in both fields throughout the growth stages. In the periodic waterlogged field, the relative abundance of Chloroflexi, Actinobacteria, and Basidiomycota increased, while Acidobacteria and Ascomycota decreased. Beneficial microbes such as Arthrobacter, Azoarcus, Bacillus, Paenibacillus, Pseudomonas, and Streptomyces thrived in the normal field, potentially serving as biomarkers for favorable soil conditions. Conversely, phytopathogens and growth-inhibiting bacteria were prevalent in the periodic waterlogged field, indicating unfavorable conditions. The co-occurrence network in rhizosphere of the normal field had the highest complexity, implying increased sharing of resources among microorganisms and enhanced soil biological fertility. Altogether, this study demonstrated that the periodic waterlogged field had a long-term negative effect on the soil microbial community which is a key determining factor of sugarcane growth.


Assuntos
Microbiota , Saccharum , Solo/química , Saccharum/genética , RNA Ribossômico 16S/genética , Tailândia , Bactérias/genética , Microbiota/genética , Grão Comestível/genética , Microbiologia do Solo , Rizosfera
2.
PLoS One ; 18(2): e0281505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36749783

RESUMO

A novel methylotrophic bacterium designated as NMS14P was isolated from the root of an organic coffee plant (Coffea arabica) in Thailand. The 16S rRNA sequence analysis revealed that this new isolate belongs to the genus Methylobacterium, and its novelty was clarified by genomic and comparative genomic analyses, in which NMS14P exhibited low levels of relatedness with other Methylobacterium-type strains. NMS14P genome consists of a 6,268,579 bp chromosome, accompanied by a 542,519 bp megaplasmid and a 66,590 bp plasmid, namely pNMS14P1 and pNMS14P2, respectively. Several genes conferring plant growth promotion are aggregated on both chromosome and plasmids, including phosphate solubilization, indole-3-acetic acid (IAA) biosynthesis, cytokinins (CKs) production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, sulfur-oxidizing activity, trehalose synthesis, and urea metabolism. Furthermore, pangenome analysis showed that NMS14P possessed the highest number of strain-specific genes accounting for 1408 genes, particularly those that are essential for colonization and survival in a wide array of host environments, such as ABC transporter, chemotaxis, quorum sensing, biofilm formation, and biosynthesis of secondary metabolites. In vivo tests have supported that NMS14P significantly promoted the growth and development of maize, chili, and sugarcane. Collectively, NMS14P is proposed as a novel plant growth-promoting Methylobacterium that could potentially be applied to a broad range of host plants as Methylobacterium-based biofertilizers to reduce and ultimately substitute the use of synthetic agrochemicals for sustainable agriculture.


Assuntos
Methylobacterium , Saccharum , Zea mays/genética , Saccharum/genética , Methylobacterium/genética , RNA Ribossômico 16S/genética , Grão Comestível/genética , Filogenia
3.
Microorganisms ; 11(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677429

RESUMO

Gut microbiota play vital roles in human health, utilizing indigestible nutrients, producing essential substances, regulating the immune system, and inhibiting pathogen growth. Gut microbial profiles are dependent on populations, geographical locations, and long-term dietary patterns resulting in individual uniqueness. Gut microbiota can be classified into enterotypes based on their patterns. Understanding gut enterotype enables us to interpret the capability in macronutrient digestion, essential substance production, and microbial co-occurrence. However, there is still no detailed characterization of gut microbiota enterotype in urban Thai people. In this study, we characterized the gut microbiota of urban Thai individuals by amplicon sequencing and classified their profiles into enterotypes, including Prevotella (EnP) and Bacteroides (EnB) enterotypes. Enterotypes were associated with lifestyle, dietary habits, bacterial diversity, differential taxa, and microbial pathways. Microbe-microbe interactions have been studied via co-occurrence networks. EnP had lower α-diversities than those in EnB. A correlation analysis revealed that the Prevotella genus, the predominant taxa of EnP, has a negative correlation with α-diversities. Microbial function enrichment analysis revealed that the biosynthesis pathways of B vitamins and fatty acids were significantly enriched in EnP and EnB, respectively. Interestingly, Ruminococcaceae, resistant starch degraders, were the hubs of both enterotypes, and strongly correlated with microbial diversity, suggesting that traditional Thai food, consisting of rice and vegetables, might be the important drivers contributing to the gut microbiota uniqueness in urban Thai individuals. Overall findings revealed the biological uniqueness of gut enterotype in urban Thai people, which will be advantageous for developing gut microbiome-based diagnostic tools.

4.
Front Microbiol ; 12: 623799, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828538

RESUMO

Converting conventional farms to organic systems to improve ecosystem health is an emerging trend in recent decades, yet little is explored to what extent and how this process drives the taxonomic diversity and functional capacity of above-ground microbes. This study was, therefore, conducted to investigate the effects of agricultural management, i.e., organic, transition, and conventional, on the structure and function of sugarcane phyllosphere microbial community using the shotgun metagenomics approach. Comparative metagenome analysis exhibited that farming practices strongly influenced taxonomic and functional diversities, as well as co-occurrence interactions of phyllosphere microbes. A complex microbial network with the highest connectivity was observed in organic farming, indicating strong resilient capabilities of its microbial community to cope with the dynamic environmental stressors. Organic farming also harbored genus Streptomyces as the potential keystone species and plant growth-promoting bacteria as microbial signatures, including Mesorhizobium loti, Bradyrhizobium sp. SG09, Lactobacillus plantarum, and Bacillus cellulosilyticus. Interestingly, numerous toxic compound-degrading species were specifically enriched in transition farming, which might suggest their essential roles in the transformation of conventional to organic farming. Moreover, conventional practice diminished the abundance of genes related to cell motility and energy metabolism of phyllosphere microbes, which could negatively contribute to lower microbial diversity in this habitat. Altogether, our results demonstrated the response of sugarcane-associated phyllosphere microbiota to specific agricultural managements that played vital roles in sustainable sugarcane production.

5.
Metabolites ; 8(4)2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30486288

RESUMO

Glycogen-enriched biomass of Arthrospira platensis has increasingly gained attention as a source for bioethanol production. To study the metabolic capabilities of glycogen production in A. platensis C1, a genome-scale metabolic model (GEM) could be a useful tool for predicting cellular behavior and suggesting strategies for glycogen overproduction. New experimentally validated GEM of A. platensis C1 namely iAK888, which has improved metabolic coverage and functionality was employed in this research. The iAK888 is a fully functional compartmentalized GEM consisting of 888 genes, 1,096 reactions, and 994 metabolites. This model was demonstrated to reasonably predict growth and glycogen fluxes under different growth conditions. In addition, iAK888 was further employed to predict the effect of deficiencies of NO3-, PO43-, or SO42- on the growth and glycogen production in A. platensis C1. The simulation results showed that these nutrient limitations led to a decrease in growth flux and an increase in glycogen flux. The experiment of A. platensis C1 confirmed the enhancement of glycogen fluxes after the cells being transferred from normal Zarrouk's medium to either NO3-, PO43-, or SO42--free Zarrouk's media. Therefore, iAK888 could be served as a predictive model for glycogen overproduction and a valuable multidisciplinary tool for further studies of this important academic and industrial organism.

6.
Plant Cell Physiol ; 58(4): 822-830, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158667

RESUMO

The development of a reliable genetic transformation system for Arthrospira platensis has been a long-term goal, mainly for those trying either to improve its performance in large-scale cultivation systems or to enhance its value as food and feed additives. However, so far, most of the attempts to develop such a transformation system have had limited success. In this study, an efficient and stable transformation system for A. platensis C1 was successfully developed. Based on electroporation and transposon techniques, exogenous DNA could be transferred to and stably maintained in the A. platensis C1 genome. Most strains of Arthrospira possess strong restriction barriers, hampering the development of a gene transfer system for this group of cyanobacteria. By using a type I restriction inhibitor and liposomes to protect the DNA from nuclease digestion, the transformation efficiency was significantly improved. The transformants were able to grow on a selective medium for more than eight passages, and the transformed DNA could be detected from the stable transformants. We propose that the intrinsic endonuclease enzymes, particularly the type I restriction enzyme, in A. platensis C1 play an important role in the transformation efficiency of this industrial important cyanobacterium.


Assuntos
Enzimas/metabolismo , Spirulina/enzimologia , Spirulina/genética , Transformação Genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meios de Cultura/química , Meios de Cultura/farmacologia , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana/genética , Enzimas/genética , Genoma Bacteriano , Plasmídeos , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Espectinomicina/farmacologia , Spirulina/efeitos dos fármacos , Transposases/genética
7.
Stand Genomic Sci ; 6(1): 43-53, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22675597

RESUMO

Arthrospira platensis is a cyanobacterium that is extensively cultivated outdoors on a large commercial scale for consumption as a food for humans and animals. It can be grown in monoculture under highly alkaline conditions, making it attractive for industrial production. Here we describe the complete genome sequence of A. platensis C1 strain and its annotation. The A. platensis C1 genome contains 6,089,210 bp including 6,108 protein-coding genes and 45 RNA genes, and no plasmids. The genome information has been used for further comparative analysis, particularly of metabolic pathways, photosynthetic efficiency and barriers to gene transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...