Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255535

RESUMO

For many industrial applications, the simultaneous presence in a material of different functional properties is necessary. The main interest lies in making a single material more versatile and durable, less fragile and more efficient. In this study, two concomitant properties in the same material were mainly studied: resistance to cracking and the increase in its hydrophobic properties. The chosen process was the sol-gel route due to its versatility and the ease of formulating materials from various precursors in order to obtain (multi)functional materials. In this paper, sol-gel coatings were prepared with tetraethoxysilane, methyltrimethoxysilane and diethoxydimethylsilane as precursors. Tetraethoxysilane was mainly used to improve the material's mechanical properties, especially hardness, and silicon oil was added to improve its hydrophobic behavior. The integration of silicon oil was monitored via 29Si NMR. Microstructural characterizations were carried out to correlate the multi-scale properties with the microstructure of the derived films. Young's modulus and hardness were measured to highlight the effect of key formulation parameters on the mechanical strength of the coatings. The synergistic effect of these precursors is underlined as well as the beneficial effect of silicon oil (generated in situ or precondensed).

2.
ACS Nano ; 16(1): 111-118, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34787390

RESUMO

MXenes are two-dimensional metal carbides or nitrides that are currently proposed in many applications thanks to their unique attributes including high conductivity and accessible surface. Recently, a synthetic route was proposed to prepare MXenes from the molten salt etching of precursors allowing for the preparation of MXene (denoted as MS-MXenes, for molten salt MXene) with tuned surface termination groups, resulting in improved electrochemical properties. However, further delamination of as-prepared multilayer MS-MXenes still remains a major challenge. Here, we report on the successful exfoliation of MS-Ti3C2Tx via the intercalation of the organic molecule TBAOH (tetrabutylammonium hydroxide), followed by sonication to separate the layers. The treatment time could be adapted to tune the wetting behavior of the MS-Ti3C2Tx. As a result, a self-supported Cl-terminated MXene film could be prepared by filtration. Finally, MS-Ti3C2Tx used as a Li-ion battery anode could achieve a high specific capacity of 225 mAh g-1 at a 1C rate together with an excellent rate capability of 95 mAh g-1 at 167C. These results also show that tuning of the surface chemistry of MXene is of key importance to this field with the likely result being increased electrochemical performance.

3.
Nanotechnology ; 23(50): 505206, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23196327

RESUMO

Titanium dioxide is a well known photocatalyst for reactions involving surface trapped photogenerated carriers. Noble metal photo-reduction may be used for the processing of silver/TiO(2) nanocomposite coatings that may exhibit interesting optical and electrical properties. We present here results of our investigations performed on an original system consisting of preformed colloidal TiO(2) nanoparticles homogeneously dispersed within a mesoporous silica host matrix. Light irradiation of samples immerged in an aqueous silver salt solution leads to the homogeneous deposition of silver islands in the vicinity of the TiO(2) particles and throughout the film thickness. The silver volume fraction is directly controlled by the irradiation dose up to a value of about 16 vol.%. Films exhibit tunable plasmonic properties that correspond to silver nanoparticles in interaction, and a percolation threshold is observed at 8-10 vol.%, leading to films with a conductivity of about 40 S cm(-1). The major interest of this method lies in the high silver reduction quantum efficiency (about 50%) and the possibility to modulate optical and electronic properties by light irradiation while the low temperature of processing permits the photolithographic deposition of metallic patterns on organic flexible substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...