Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(4): e0230782, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32294093

RESUMO

Understanding immune responses to native antigens in response to natural infections can lead to improved approaches to vaccination. This study sought to characterize the humoral immune response to anthrax toxin components, capsule and spore antigens in individuals (n = 46) from the Kayseri and Malatya regions of Turkey who had recovered from mild or severe forms of cutaneous anthrax infection, compared to regional healthy controls (n = 20). IgG antibodies to each toxin component, the poly-γ-D-glutamic acid capsule, the Bacillus collagen-like protein of anthracis (BclA) spore antigen, and the spore carbohydrate anthrose, were detected in the cases, with anthrax toxin neutralization and responses to Protective Antigen (PA) and Lethal Factor (LF) being higher following severe forms of the disease. Significant correlative relationships among responses to PA, LF, Edema Factor (EF) and capsule were observed among the cases. Though some regional control sera exhibited binding to a subset of the tested antigens, these samples did not neutralize anthrax toxins and lacked correlative relationships among antigen binding specificities observed in the cases. Comparison of serum binding to overlapping decapeptides covering the entire length of PA, LF and EF proteins in 26 cases compared to 8 regional controls revealed that anthrax toxin-neutralizing antibody responses elicited following natural cutaneous anthrax infection are directed to conformational epitopes. These studies support the concept of vaccination approaches that preserve conformational epitopes.


Assuntos
Antraz/imunologia , Anticorpos Antibacterianos/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Epitopos/imunologia , Dermatopatias Bacterianas/imunologia , Adulto , Vacinas contra Antraz/imunologia , Especificidade de Anticorpos/imunologia , Bacillus anthracis/imunologia , Feminino , Humanos , Imunidade Humoral/imunologia , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Testes de Neutralização/métodos , Turquia , Adulto Jovem
2.
Int J Mol Sci ; 20(5)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866434

RESUMO

The Bacillus anthracis Edema Toxin (ET), composed of a Protective Antigen (PA) and the Edema Factor (EF), is a cellular adenylate cyclase that alters host responses by elevating cyclic adenosine monophosphate (cAMP) to supraphysiologic levels. However, the role of ET in systemic anthrax is unclear. Efferocytosis is a cAMP-sensitive, anti-inflammatory process of apoptotic cell engulfment, the inhibition of which may promote sepsis in systemic anthrax. Here, we tested the hypothesis that ET inhibits efferocytosis by primary human macrophages and evaluated the mechanisms of altered efferocytic signaling. ET, but not PA or EF alone, inhibited the efferocytosis of early apoptotic neutrophils (PMN) by primary human M2 macrophages (polarized with IL-4, IL-10, and/or dexamethasone) at concentrations relevant to those encountered in systemic infection. ET inhibited Protein S- and MFGE8-dependent efferocytosis initiated by signaling through MerTK and αVß5 receptors, respectively. ET inhibited Rac1 activation as well as the phosphorylation of Rac1 and key activating sites of calcium calmodulin-dependent kinases CamK1α, CamK4, and vasodilator-stimulated phosphoprotein, that were induced by the exposure of M2(Dex) macrophages to Protein S-opsonized apoptotic PMN. These results show that ET impairs macrophage efferocytosis and alters efferocytic receptor signaling.


Assuntos
Antígenos de Bactérias/farmacologia , Bacillus anthracis/metabolismo , Toxinas Bacterianas/farmacologia , Macrófagos/citologia , Neutrófilos/citologia , Fagocitose/efeitos dos fármacos , Antígenos de Superfície/metabolismo , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , AMP Cíclico/metabolismo , Dexametasona/farmacologia , Relação Dose-Resposta a Droga , Humanos , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas do Leite/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Proteína S/metabolismo , Receptores de Vitronectina/metabolismo , Transdução de Sinais/efeitos dos fármacos , c-Mer Tirosina Quinase/metabolismo
3.
Clin Vaccine Immunol ; 24(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28877928

RESUMO

Edema toxin (ET), composed of edema factor (EF) and protective antigen (PA), is a virulence factor of Bacillus anthracis that alters host immune cell function and contributes to anthrax disease. Anthrax vaccine precipitated (AVP) contains low but detectable levels of EF and can elicit EF-specific antibodies in human recipients of AVP. Active and passive vaccination of mice with EF can contribute to protection from challenge with Bacillus anthracis spores or ET. This study compared humoral responses to ET in recipients of AVP (n = 33) versus anthrax vaccine adsorbed (AVA; n = 66), matched for number of vaccinations and time postvaccination, and further determined whether EF antibodies elicited by AVP contribute to ET neutralization. AVP induced higher incidence (77.8%) and titer (229.8 ± 58.6) of EF antibodies than AVA (4.2% and 7.8 ± 8.3, respectively), reflecting the reported low but detectable presence of EF in AVP. In contrast, PA IgG levels and ET neutralization measured using a luciferase-based cyclic AMP reporter assay were robust and did not differ between the two vaccine groups. Multiple regression analysis failed to detect an independent contribution of EF antibodies to ET neutralization in AVP recipients; however, EF antibodies purified from AVP sera neutralized ET. Serum samples from at least half of EF IgG-positive AVP recipients bound to nine decapeptides located in EF domains II and III. Although PA antibodies are primarily responsible for ET neutralization in recipients of AVP, increased amounts of an EF component should be investigated for the capacity to enhance next-generation, PA-based vaccines.


Assuntos
Vacinas contra Antraz/imunologia , Antraz/prevenção & controle , Anticorpos Antibacterianos/biossíntese , Anticorpos Neutralizantes/biossíntese , Antígenos de Bactérias/imunologia , Bacillus anthracis/imunologia , Toxinas Bacterianas/imunologia , Adulto , Animais , Antraz/imunologia , Vacinas contra Antraz/química , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Testes de Neutralização , Adulto Jovem
4.
Vaccine ; 35(26): 3416-3422, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28504191

RESUMO

A major difference between two currently licensed anthrax vaccines is presence (United Kingdom Anthrax Vaccine Precipitated, AVP) or absence (United States Anthrax Vaccine Adsorbed, AVA) of quantifiable amounts of the Lethal Toxin (LT) component Lethal Factor (LF). The primary immunogen in both vaccine formulations is Protective Antigen (PA), and LT-neutralizing antibodies directed to PA are an accepted correlate of vaccine efficacy; however, vaccination studies in animal models have demonstrated that LF antibodies can be protective. In this report we compared humoral immune responses in cohorts of AVP (n=39) and AVA recipients (n=78) matched 1:2 for number of vaccinations and time post-vaccination, and evaluated whether the LF response contributes to LT neutralization in human recipients of AVP. PA response rates (≥95%) and PA IgG concentrations were similar in both groups; however, AVP recipients exhibited higher LT neutralization ED50 values (AVP: 1464.0±214.7, AVA: 544.9±83.2, p<0.0001) and had higher rates of LF IgG positivity (95%) compared to matched AVA vaccinees (1%). Multiple regression analysis revealed that LF IgG makes an independent and additive contribution to the LT neutralization response in the AVP group. Affinity purified LF antibodies from two independent AVP recipients neutralized LT and bound to LF Domain 1, confirming contribution of LF antibodies to LT neutralization. This study documents the benefit of including an LF component to PA-based anthrax vaccines.


Assuntos
Vacinas contra Antraz/uso terapêutico , Antraz/prevenção & controle , Anticorpos Antibacterianos/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Adulto , Vacinas contra Antraz/classificação , Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/sangue , Feminino , Humanos , Imunidade Humoral , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Fatores Sexuais , Adulto Jovem
5.
Vaccine ; 31(14): 1856-63, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23415781

RESUMO

A substantial fraction of individuals vaccinated against anthrax have low to immeasurable levels of serum Lethal Toxin (LeTx)-neutralizing activity. The only known correlate of protection against Bacillus anthracis in the currently licensed vaccine is magnitude of the IgG response to Protective Antigen (PA); however, some individuals producing high serum levels of anti-PA IgG fail to neutralize LeTx in vitro. This suggests that non-protective humoral responses to PA may be immunodominant in some individuals. Therefore, to better understand why anthrax vaccination elicits heterogeneous levels of protection, this study was designed to elucidate the relationship between anti-PA fine specificity and LeTx neutralization in response to PA vaccination. Inbred mice immunized with recombinant PA produced high levels of anti-PA IgG and neutralized LeTx in vitro and in vivo. Decapeptide binding studies using pooled sera reproducibly identified the same 9 epitopes. Unexpectedly, sera from individual mice revealed substantial heterogeneity in the anti-PA IgG and LeTx neutralization responses, despite relative genetic homogeneity, shared environment and exposure to the same immunogen. This heterogeneity permitted the identification of specificities that correlate with LeTx-neutralizing activity. IgG binding to six decapeptides comprising two PA epitopes, located in domains I and IV, significantly correlate with seroconversion to LeTx neutralization. These results indicate that stochastic variation in humoral immunity is likely to be a major contributor to the general problem of heterogeneity in vaccine responsiveness and suggest that vaccine effectiveness could be improved by approaches that focus the humoral response toward protective epitopes in a greater fraction of vaccinees.


Assuntos
Vacinas contra Antraz/imunologia , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Animais , Antraz/imunologia , Antraz/prevenção & controle , Vacinas contra Antraz/química , Vacinas contra Antraz/genética , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Bacillus anthracis/imunologia , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Epitopos de Linfócito B/imunologia , Humanos , Imunidade Humoral , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos , Peptídeos/imunologia
6.
Toxins (Basel) ; 4(12): 1451-67, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23342680

RESUMO

Anthrax Lethal Toxin consists of Protective Antigen (PA) and Lethal Factor (LF), and current vaccination strategies focus on eliciting antibodies to PA. In human vaccination, the response to PA can vary greatly, and the response is often directed toward non-neutralizing epitopes. Variable vaccine responses have been shown to be due in part to genetic differences in individuals, with both MHC class II and other genes playing roles. Here, we investigated the relative contribution of MHC class II versus non-MHC class II genes in the humoral response to PA and LF immunization using three immunized strains of inbred mice: A/J (H-2k at the MHC class II locus), B6 (H-2b), and B6.H2k (H-2k). IgG antibody titers to LF were controlled primarily by the MHC class II locus, whereas IgG titers to PA were strongly influenced by the non-MHC class II genetic background. Conversely, the humoral fine specificity of reactivity to LF appeared to be controlled primarily through non-MHC class II genes, while the specificity of reactivity to PA was more dependent on MHC class II. Common epitopes, reactive in all strains, occurred in both LF and PA responses. These results demonstrate that MHC class II differentially influences humoral immune responses to LF and PA.


Assuntos
Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Genes MHC da Classe II , Imunidade Humoral/genética , Animais , Mapeamento de Epitopos , Imunização , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Proteínas Recombinantes/imunologia
7.
Toxins (Basel) ; 3(9): 1111-30, 2011 09.
Artigo em Inglês | MEDLINE | ID: mdl-22039574

RESUMO

A major virulence factor of Bacillus anthracis is the anthrax Lethal Toxin (LeTx), a bipartite toxin composed of Protective Antigen and Lethal Factor. Systemic administration of LeTx to laboratory animals leads to death associated with vascular leakage and pulmonary edema. In this study, we investigated whether systemic exposure of mice to LeTx would induce gene expression changes associated with vascular/capillary leakage in lung tissue. We observed enhanced susceptibility of A/J mice to death by systemic LeTx administration compared to the C57BL/6 strain. LeTx-induced groups of both up- and down-regulated genes were observed in mouse lungs 6 h after systemic administration of wild type toxin compared to lungs of mice exposed to an inactive mutant form of the toxin. Lungs of the less susceptible C57BL/6 strain showed 80% fewer differentially expressed genes compared to lungs of the more sensitive A/J strain. Expression of genes known to regulate vascular permeability was modulated by LeTx in the lungs of the more susceptible A/J strain. Unexpectedly, the largest set of genes with altered expression was immune specific, characterized by the up-regulation of lymphoid genes and the down-regulation of myeloid genes. Transcripts encoding neutrophil chemoattractants, modulators of tumor regulation and angiogenesis were also differentially expressed in both mouse strains. These studies provide new directions for the investigation of vascular leakage and pulmonary edema induced by anthrax LeTx.


Assuntos
Antígenos de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Pulmão/efeitos dos fármacos , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Dose Letal Mediana , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...