Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37959703

RESUMO

The purpose of this study was to investigate the synthesis of iron oxide nanoparticles under two different conditions, namely high and low gas flow rates, using laser pyrolysis and to examine the influence of laser power. The attained nanoparticles have been characterised regarding their stability and hydrodynamic dimensions by dispersive light scattering analysis (DLS), structure-X-ray diffraction (XRD), elemental composition-energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), and morpho-structural characterisation achieved by transmission electron microscopy (TEM) and selected-area electron diffraction (SAED). For a better understanding of the laser power influence, the residence time was also calculated.

2.
Beilstein J Nanotechnol ; 14: 616-630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284551

RESUMO

TiO2 nanoparticles were synthesized by laser pyrolysis from TiCl4 vapor in air in the presence of ethylene as sensitizer at different working pressures (250-850 mbar) with and without further calcination at 450 °C. The obtained powders were analyzed by energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, and transmission electron microscopy. Also, specific surface area and photoluminescence with optical absorbance were evaluated. By varying the synthesis parameters (especially the working pressure), different TiO2 nanopowders were obtained, whose photodegradation properties were tested compared to a commercial Degussa P25 sample. Two series of samples were obtained. Series "a" includes thermally treated TiO2 nanoparticles (to remove impurities) that have different proportions of the anatase phase (41.12-90.74%) mixed with rutile and small crystallite sizes of 11-22 nm. Series "b" series represents nanoparticles with high purity, which did not require thermal treatment after synthesis (ca. 1 atom % of impurities). These nanoparticles show an increased anatase phase content (77.33-87.42%) and crystallite sizes of 23-45 nm. The TEM images showed that in both series small crystallites form spheroidal nanoparticles with dimensions of 40-80 nm, whose number increases with increasing the working pressure. The photocatalytic properties have been investigated regarding the photodegradation of ethanol vapors in Ar with 0.3% O2 using P25 powder as reference under simulated solar light. During the irradiation H2 gas production has been detected for the samples from series "b", whereas the CO2 evolution was observed for all samples from series "a".

3.
Polymers (Basel) ; 16(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38201697

RESUMO

High-quality convex colloidal photonic crystals can be grown on the tip of an optical fiber by self-assembly using the hanging drop method. They are convex-shaped, produce the diffraction of reflecting light with high efficiency (blazing colors), and have a high curvature. The convex colloidal crystals are easily detachable and, as free-standing objects, they are mechanically robust, allowing their manipulation and use as convex reflective diffraction devices in imaging spectrometers. Currently, the same characteristics are obtained by using gratings-based structures. The optical fiber/colloidal crystal interface is disordered; thus, no light diffraction can be registered. The ordering at this interface was highly increased by forming a polystyrene spacer on the optical fiber tip, which served as a self-assembly substrate for silica colloid, as a mechanical bond between the fiber and the crystal, and as a filler reservoir for an inverse-opal synthesis. The silica opal-like grown on the optical fiber tip can be transformed into a high-quality polystyrene (blazing colors) inverse-opal by using the polystyrene spacer as a filler. We found that the colloidal crystal axisymmetric self-assembles onto the optical fiber tip only if a maximum volume of the colloid drop is settled on a flat end of the polystyrene spacer.

4.
Polymers (Basel) ; 14(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35683831

RESUMO

Silica and polystyrene spheres with a small size ratio (r = 0.005) form by sequential hanging drop self-assembly, a binary colloidal crystal through which calcination transforms in a silica-ordered concavity array. These arrays are capable of light Bragg diffraction and shape dependent optical phenomena, and they can be transformed into inverse-opal structures. Hierarchical 2D and 3D super-structures with ordered concavities as structural units were fabricated in this study.

5.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328475

RESUMO

In the current paper, a new hybrid nanofluid based on graphene oxide sheets and silicon nanoparticles is proposed for thermal applications. GO sheets and Si nanoparticles with different mixture ratios are dispersed in distilled water. Dynamic viscosity is measured at temperatures within the range 20-50 °C and the values are compared to the results available in the literature. The results indicated that the viscosity increases with increasing the mixture ratio of graphene oxide. A new correlation for the dynamic viscosity based on the experimental findings is proposed. Finally, the criteria for the performance of new hybrid nanofluid for thermal applications are analyzed.


Assuntos
Grafite , Nanopartículas , Silício , Água
6.
Polymers (Basel) ; 13(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34883585

RESUMO

A polyester fabric with rectangular openings was used as a sacrificial template for the guiding of a sub-micron sphere (polystyrene (PS) and silica) aqueous colloid self-assembly process during evaporation as a patterned colloidal crystal (PCC). This simple process is also a robust one, being less sensitive to external parameters (ambient pressure, temperature, humidity, vibrations). The most interesting feature of the concave-shape-pattern unit cell (350 µm × 400 µm × 3 µm) of this crystal is the presence of triangular prisms at its border, each prism having a one-dimensional sphere array at its top edge. The high-quality ordered single layer found inside of each unit cell presents the super-prism effect and left-handed behavior. Wider yet elongated deposits with ordered walls and disordered top surfaces were formed under the fabric knots. Rectangular patterning was obtained even for 20 µm PS spheres. Polyester fabrics with other opening geometries and sizes (~300-1000 µm) or with higher fiber elasticity also allowed the formation of similar PCCs, some having curved prismatic walls. A higher colloid concentration (10-20%) induces the formation of thicker walls with fiber-negative replica morphology. Additionally, thick-wall PCCs (~100 µm) with semi-cylindrical morphology were obtained using SiO2 sub-microspheres and a wavy fabric. The colloidal pattern was used as a lithographic mask for natural lithography and as a template for the synthesis of triangular-prism-shaped inverted opals.

7.
Pharmaceutics ; 13(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34959411

RESUMO

The purpose of this study was to investigate the effectiveness in photodynamic therapy of iron oxide nanoparticles (γ-Fe2O3 NPs), synthesized by laser pyrolysis technique, functionalized with 5,10,15,20-(Tetra-4-sulfonatophenyl) porphyrin tetraammonium (TPPS) on human cutaneous melanoma cells, after only 1 min blue light exposure. The efficiency of porphyrin loading on the iron oxide nanocarriers was estimated by using absorption and FTIR spectroscopy. The singlet oxygen yield was determined via transient characteristics of singlet oxygen phosphorescence at 1270 nm both for porphyrin functionalized nanoparticles and rose bengal used as standard. The irradiation was performed with a LED (405 nm, 1 mW/cm2) for 1 min after melanoma cells were treated with TPPS functionalized iron oxide nanoparticles (γ-Fe2O3 NPs_TPPS) and incubated for 24 h. Biological tests revealed a high anticancer effect of γ-Fe2O3 NPs_TPPS complexes indi-cated by the inhibition of tumor cell proliferation, reduction of cell adhesion, and induction of cell death through ROS generated by TPPS under light exposure. The biological assays were combined with the pharmacokinetic prediction of the porphyrin.

8.
Polymers (Basel) ; 12(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256060

RESUMO

Even today, breast cancer remains a global public problem, with a high mortality rate among women. Nanoparticle (NP) based systems are developed to enhance drug delivery, reducing the toxic effect of medicine molecules. By using iron oxide nanoparticles for cancer treatment, several advantages were highlighted: the ability to target specific locations derived from their magnetic properties and reduced side effects. The aim of this study was to examine on breast cancer cell line the anticancer potential of γ-Fe2O3 NPs loaded with doxorubicin (DOX) and stabilized with carboxymethylcellulose sodium (CMCNa). The γ-Fe2O3 NPs were synthesized by laser pyrolysis technique and their nanometric size and crystallinity were confirmed by X-ray diffraction and transmission electron microscopy. The loading efficiency was estimated by using absorption and fluorescence spectroscopy. The DOX conjugated//CMCNa coated γ-Fe2O3 NPs proved through the biological studies to have a good anticancer effect through the inhibition of tumoral cell proliferation, disruption of the cellular membrane, induction of cell death and reduced effects on normal breast cells. Our data showed that DOX cytotoxicity increases significantly when conjugated with É£-Fe2O3 and É£-Fe2O3_CMCNa, a 50% reduction of cancer cell viability was obtained with a concentration around 0.1 µg/mL.

9.
Beilstein J Nanotechnol ; 10: 9-21, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30680275

RESUMO

Zn/F co-doped SnO2 nanoparticles with a mean diameter of less than 15 nm and a narrow size distribution were synthesized by a one-step laser pyrolysis technique using a reactive mixture containing tetramethyltin (SnMe4) and diethylzinc (ZnEt2) vapors, diluted Ar, O2 and SF6. Their structural, morphological, optical and electrical properties are reported in this work. The X-ray diffraction (XRD) analysis shows that the nanoparticles possess a tetragonal SnO2 crystalline structure. The main diffraction patterns of stannous fluoride (SnF2) were also identified and a reduction in intensity with increasing Zn percentage was evidenced. For the elemental composition estimation, energy dispersion X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) measurements were performed. In general, both analyses showed that the Zn percentage increases with increasing ZnEt2 flow, accompanied at the same time by a decrease in the amount of F in the nanopowders when the same SF6 flow was employed. The Raman spectra of the nanoparticles show the influence of both Zn and F content and crystallite size. The fluorine presence is due to the catalytic partial decomposition of the SF6 laser energy transfer agent. In direct correlation with the increase in the Zn doping level, the bandgap of co-doped nanoparticles shifts to lower energy (from 3.55 to 2.88 eV for the highest Zn dopant concentration).

10.
Nanomaterials (Basel) ; 8(7)2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976868

RESUMO

Magnetic nanoparticles offer multiple utilization possibilities in biomedicine. In this context, the interaction with cellular structures and their biological effects need to be understood and controlled for clinical safety. New magnetic nanoparticles containing metallic/carbidic iron and elemental silicon phases were synthesized by laser pyrolysis using Fe(CO)5 vapors and SiH4 gas as Fe and Si precursors, then passivated and coated with biocompatible agents, such as l-3,4-dihydroxyphenylalanine (l-DOPA) and sodium carboxymethyl cellulose (CMC-Na). The resulting magnetic nanoparticles were characterized by XRD, EDS, and TEM techniques. To evaluate their biocompatibility, doses ranging from 0⁻200 µg/mL hybrid Fe-Si nanoparticles were exposed to Caco2 cells for 24 and 72 h. Doses below 50 μg/mL of both l-DOPA and CMC-Na-coated Fe-Si nanoparticles induced no significant changes of cellular viability or membrane integrity. The cellular internalization of nanoparticles was dependent on their dispersion in culture medium and caused some changes of F-actin filaments organization after 72 h. However, reactive oxygen species were generated after exposure to 25 and 50 μg/mL of both Fe-Si nanoparticles types, inducing the increase of intracellular glutathione level and activation of transcription factor Nrf2. At nanoparticles doses below 50 μg/mL, Caco2 cells were able to counteract the oxidative stress by activating the cellular protection mechanisms. We concluded that in vitro biological responses to coated hybrid Fe-Si nanoparticles depended on particle synthesis conditions, surface coating, doses and incubation time.

11.
Rom J Morphol Embryol ; 56(2 Suppl): 691-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26429160

RESUMO

Iron oxide nanoparticles are promising candidates for theranostics in cancer, that aims to achieve in one-step precise tumor imaging by magnetic resonance, and targeted therapy through surface attached anti-cancer drugs. The aim of this study was to investigate in preclinical setting the biocompatibility of new iron oxide-based nanoparticles that were coated with L-DOPA for improved dispersion in biological media. These nanostructures (NPs) were designed for biomedical applications as contrast agents and/or drug carriers. We investigated the effect exerted in vitro by NPs and L-DOPA on the viability and proliferation of normal mouse L929 fibroblasts. NPs exhibited good biocompatibility against these cells. Moreover, L-DOPA contained in NPs sustained fibroblasts proliferation and/or limited anti-proliferative effects of naked nanoparticles. In the animal study, C57BL/6 mice were injected intraperitoneally with a single dose of NPs (approximately 125 mg/kg body weight). We followed up hematological and histological parameters for one, three and seven days after NPs administration. Results indicated that NPs possibly induced local inflammation and consequent recruitment of peripheral lymphocytes, whilst the decrease of platelet counts may reflect tissue lesions caused by NPs. The histopathological study showed mild to moderate alterations in the hepatocytes, splenic and renal cells, while the brain parenchyma only presented nonspecific congestive changes. Taken altogether, the preclinical study indicated that the new iron oxide nanoparticles coated with L-DOPA were biocompatible against fibroblasts and had a convenient toxicological profile when administered intraperitoneally in a single dose to C57BL/6 mice. Accordingly, the proposed nanostructure is a promising candidate for imaging and treating dispersed peritoneal tumors.


Assuntos
Compostos Férricos/química , Infusões Parenterais/métodos , Levodopa/química , Nanopartículas Metálicas/química , Nanomedicina/métodos , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Materiais Revestidos Biocompatíveis , Meios de Contraste/química , Portadores de Fármacos/química , Fibroblastos/metabolismo , Hepatócitos/citologia , Linfócitos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Nanoestruturas/química , Baço/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...