Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37687548

RESUMO

The aim of the present research is to develop a novel hybrid coating for a Ti dental implant that combines nature-inspired biomimetic polymers and TiO2 nanostructures with an entrapped ZnO antimicrobial agent. ZnO was used in other studies to cover the surface of Ti or Ti-Zr to reduce the need of clinical antibiotics, prevent the onset of peri-implantitis, and increase the success rate of oral clinical implantation. We developed an original coating that represents a promising approach in clinical dentistry. The titanium surface was first anodized to obtain TiO2 nanotubes (NT). Subsequently, on the NT surface, silk fibroin isolated from Bombyx mori cocoons was deposited as nanofibers using the electrospun technique. For an improved antibacterial effect, ZnO nanoparticles were incorporated in this biopolymer using three different methods. The surface properties of the newly created coatings were assessed to establish how they are influenced by the most important features: morphology, wettability, topography. The evaluation of stability by electrochemical methods in simulated physiological solutions was discussed more in detail, considering that it could bring necessary information related to the behavior of the implant material. All samples had improved roughness and hydrophilicity, as well as corrosion stability (with protection efficiency over 80%). The antibacterial test shows that the functional hybrid coating has good antibacterial activity because it can inhibit the proliferation of Staphylococcus aureus up to 53% and Enterococcus faecalis up to 55%. All Ti samples with the modified surface have proven superior properties compared with unmodified TiNT, which proved that they have the potential to be used as implant material in dentistry.

2.
Environ Sci Pollut Res Int ; 28(28): 38224-38237, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33733411

RESUMO

In this study, a new material obtained from titanium ingots residue was coated with natural carotenoids having antibacterial properties. The waste is a no recycling titanium scrap from technological production process which was pressed and transformed into disks titanium samples. Through anodization and annealing procedures of the titanium disk, a nanostructured titanium dioxide surface with photocatalytic and antibacterial properties was successfully obtained. The titanium scrap impurities (V, Al, and N), unwanted for production process, have shown to improve electrochemical and semiconductor properties of the residue surfaces. The nanostructured titanium scrap surface was modified with two different carotenoids, torularhodin and ß-carotene, to potentiate the antibacterial properties. The bactericidal tests were performed against Salmonella typhimurium and Escherichia coli, both Gram-negative. The best bactericidal effect is obtained for nanostructured titanium scrap disks immersed in torularhodin, with a percentage of growth inhibition around 60% against both tested bacteria. The results suggest that this low-cost waste material is suitable for efficient reuse as antibacterial surface after a few simple and inexpensive treatments.


Assuntos
Anti-Infecciosos , Nanoestruturas , Antibacterianos/farmacologia , Propriedades de Superfície , Titânio
3.
Environ Sci Pollut Res Int ; 27(4): 4450-4459, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31832964

RESUMO

The aim of this study was the valorization of titanium flakes (waste) from titanium and titanium alloy ingot production factories and using in applications related to metals recovery as retention bed for some trace metals. The titanium flakes were anodized for surface nanostructuration with TiO2 nanotubes and then annealed in order to increase the surface stability. The nanostructured titanium flakes were loaded and pressed in a retention column linked with inductively coupled plasma spectrometer (ICP-OES). This system allowed determination of trace elements such as beryllium, lanthanum, lutetium, and ytterbium from sample solutions. Beryllium recovery percentage was over 90%, while lanthanides have just a satisfactory recovery percentage (about 65% Yb and Lu and 50% La). The TiO2 nanotube architecture was not affected during utilization being able to perform for a long time. A thermodynamic and kinetic study was done for beryllium due to its successful adsorption recovery percentage. The obtained results showed that the titanium waste is a promising material for rare earth and relatively rare earth elements retention and recovery. Graphical abstract Graphical abstract.


Assuntos
Metais Terras Raras , Titânio , Lantânio/química , Lutécio/química , Metais Terras Raras/química , Titânio/análise , Titânio/química
4.
Materials (Basel) ; 12(11)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159182

RESUMO

This paper aims to investigate the composition, surface, and microstructural characteristics, and bioactivity of two commercially available pulp capping materials known as TheraCal LC and BIO MTA+. The materials were prepared as cylindrical samples and assessed by X-ray diffraction (XRD) and complex thermal analysis for mineralogical characterization, and by scanning electron microscopy (SEM) coupled with energy dispersive of X-ray (EDX), Fourier-Transformed Infrared Spectroscopy (FT-IR), and atomic force microscopy (AFM) for microstructural and surface characteristics. The in vitro bioactivity was highlighted by surface mineralization throughout SEM coupled with EDX and FT-IR analysis. XRD analysis performed on both materials showed calcium silicate phases and different radiopacifying compounds. AFM measurements indicated a smoother and more homogenous surface with a lower average roughness for TheraCal LC due to the resin matrix from its composition. FT-IR analysis displayed bands for several compounds in both materials. Both materials exhibited bioactive properties showing surface mineralization after being immersed in solution similar to the human physiological environment. However, the MTA cement showed a better mineralization due to the anhydrous and hydrated phases.

5.
Pharmaceutics ; 10(4)2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30413075

RESUMO

The present paper aims atincreasing the bioperformance of implantable Ti50Zr alloy using zwitterionic cysteine drug coating. Aspects such as stability, biocompatibility, and antibacterial effects were investigated with the help of various methods such as infrared spectroscopy (FT-IR), scanning electronic microscopy (SEM), electrochemical methods, contact angle determinations and cell response. The experimental data of zwitterionic cysteine coating indicate the existence of a hydration layer due to hydrophilic groups evidenced in FT-IR which is responsible for the decrease of contact angle and antibacterial capabilities. The electrochemical stability was evaluatedbased on Tafel plots and electrochemical impedance spectroscopy (EIS). The cell response to cysteine was determined with gingival fibroblasts measuring lactate dehydrogenase (LDH) activity, concentrations of nitric oxide (NO) and intracellular level of reactive oxygen species (ROS). All experimental results supported the increase of stability and better cells response of implantable Ti50Zr alloy coated with zwitterionic cysteine drug. The antibacterial index was measured against Staphylococcus aureus and Escherichia coli. It was demonstrated that the coating enhanced the production of intracellular ROS in time, which subsequently caused a significant increase in antibacterial index.

6.
Carbohydr Polym ; 181: 215-223, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29253966

RESUMO

The present paper introduces a study on the preparation and characterization of cellulose acetate - TiO2 nanotubes membrane. In order to be used as a hemodialysis membrane, fraxiparinized nanotubes have been incorporated into the cellulose matrix. Fraxiparine embedding was performed via strong binding ability of dopamine. Composite membrane was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and water contact angle measurement. Electrochemical impedance spectroscopy was used to correlate the morphology of composite membrane with its electrochemical properties. Mott-Schottky test proved titanium dioxide semiconductor incorporation in composite membrane. Permeation test was made to determine pure water flux. The obtained results showed that addition of nanotubes had a positive impact on membrane permeation compared with a control polymeric membrane.

7.
Bioelectrochemistry ; 107: 14-24, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26414412

RESUMO

Implant-associated infections are a major cause of morbidity and mortality. This study was performed using titanium samples coated by anodization with a titanium dioxide (TiO2) shielded nanotube layer. TiO2/Ti surface was modified by simple immersion in torularhodin solution and by using a mussel-inspired method based on polydopamine as bio adhesive for torularhodin immobilization. SEM analysis revealed tubular microstructures of torularhodin and the PDA ability to function as a catchy anchor between torularhodin and TiO2 surface. Corrosion resistance was associated with TiO2 barrier oxide layer and nano-organized oxide layer and the torularhodin surface modification does not bring significant changes in resistance of the oxide layer. Our results demonstrated that the torularhodin modified TiO2/Ti surface could effectively prevent adhesion and proliferation of Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, and Pseudomonas aeruginosa. The new modified titanium surface showed good biocompatibility and well-behaved haemocompatibility. This biomaterial with enhanced antimicrobial activity holds great potential for future biomedical applications.


Assuntos
Anti-Infecciosos/química , Carotenoides/química , Materiais Revestidos Biocompatíveis/química , Nanotubos/química , Próteses e Implantes/microbiologia , Titânio/química , Anti-Infecciosos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Carotenoides/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Indóis/química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Polímeros/química , Propriedades de Superfície
8.
Acta Biomater ; 24: 370-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26092351

RESUMO

In the present work we report the fabrication of non-thickness-limited 1D nanostructures with nanochannelar structure by anodization of Ti50Zr alloy in hot glycerol-phosphate electrolyte. These nanochannelar structures show high and adjustable aspect ratios and provide as-formed already partial crystallinity for nanochannels. In vitro studies were performed to assess the inflammatory response to nanochannel coated surfaces using RAW 264.7 macrophages. The results show that these nanochannels yield a reduced amount of metabolically-active macrophages, low potential to induce macrophage fusion into FBGC, and low concentration of pro-inflammatory cytokines in the culture medium. Moreover, higher hydrophilicity and lower corrosion rates were registered, compared to compact oxide. Collectively, the results indicate a more favorable cellular response on such nanoscale topography as compared to compact oxide control substrate, and suggest that surface architecture design of nanochannel type on implant materials holds promise for biomedical applications. STATEMENT OF SIGNIFICANCE: The use of titanium and its alloys in biomedical devices has been extensively investigated, especially for alloys possessing inherent antibacterial properties such as TiZr alloys. We report for the first time the growth of mesoporous structures, aligned oxide nanochannels, on Ti50Zr alloy. The advantages of these nanochannelar surfaces are a high surface area, a long range ordered nanoscale topology and already partial crystallinity in the as-grown state. In vitro studies performed on RAW 264.7 macrophages demonstrate the potential of nanochannels to lower the inflammatory response, thus reducing the foreign body reaction against Ti50Zr biomedical implants and promoting the successful integration of the implant.


Assuntos
Ligas/química , Macrófagos/metabolismo , Teste de Materiais , Nanoestruturas/química , Titânio/química , Zircônio/química , Animais , Linhagem Celular , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/patologia , Camundongos
9.
Mater Sci Eng C Mater Biol Appl ; 45: 56-63, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25491801

RESUMO

Various TiO2 nanofibers on Ti surface have been fabricated via electrospinning and calcination. Due to different elaboration conditions the electrospun fibers have different surface feature morphologies, characterized by scanning electronic microscopy, surface roughness, and contact angle measurements. The results have indicated that the average sample diameters are between 32 and 44 nm, roughness between 61 and 416 nm, and all samples are hydrophilic. As biological evaluation, cell culture with MG63 cell line originally derived from a human osteosarcoma was performed and correlation between nanofibers elaboration, properties and cell response was established. The cell adherence and growth are more evident on Ti samples with more aligned fibers, higher roughness and strong hydrophilic character and such fibers have been elaborated with a high speed rotating cylinder collector, confirming the idea that nanostructure elaboration conditions guide the cells' growth.


Assuntos
Nanofibras/química , Titânio/química , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Nanofibras/toxicidade , Nanofibras/ultraestrutura , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...