Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 8(27): 13463-75, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27352029

RESUMO

Large-scale molecular dynamics (MD) simulations and atomic force microscopy (AFM) in liquid are combined to characterize the adsorption of Immunoglobulin G (IgG) antibodies over a hydrophobic surface modeled with a three-layer graphene slab. We consider explicitly the water solvent, simulating systems with massive sizes (up to 770 000 atoms), for four different adsorption orientations. Protocols based on steered MD to speed up the protein diffusion stage and to enhance the dehydration process are combined with long simulation times (>150 ns) in order to make sure that the final adsorption states correspond to actual stable configurations. Our MD results and the AFM images demonstrate that the IgG antibodies are strongly adsorbed, do not unfold, and retain their secondary and tertiary structures upon deposition. Statistical analysis of the AFM images shows that many of the antibodies adopt vertical orientations, even at very small coverages, which expose at least one Fab binding site for recognition events. Single molecule force spectroscopy experiments demonstrate the immunological response of the deposited antibodies by recognizing its specific antigens. The above properties together with the strong anchoring and preservation of the secondary structure, make graphene an excellent candidate for the development of immunosensors.


Assuntos
Grafite , Imunoglobulina G/análise , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Estrutura Secundária de Proteína , Propriedades de Superfície
2.
Nanoscale ; 7(12): 5403-10, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25727249

RESUMO

The interactions of a biodegradable scaffold with cells or living tissues depend on the time-evolution of the nanoscale properties of the scaffold. We present an in situ quantitative study on the early-stage swelling and degradation of poly(lactic-co-glycolic acid) (PLGA). A novel metrology scheme based on force microscopy measurements of the patterns of PLGA nanostructures is developed to characterize the evolution of topography, volume and nanomechanical properties. The volume and nanoscale roughness show an oscillating behaviour during the first eight days of immersion; at a later stage, we observe a continuous decrease of the volume. The effective Young's modulus exhibits a monotonic decrease from an initial value of about 2.4 GPa down to 9 MPa at day 14. The oscillating behaviour of the volume before the onset of full degradation is explained by a coupled diffusion-swelling mechanism. The appearance of a second maximum in the volume evolution results from the competition between swelling and degradation.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis/química , Plásticos Biodegradáveis/química , Ácido Láctico/química , Ácido Poliglicólico/química , Cloreto de Sódio/química , Alicerces Teciduais , Absorção Fisico-Química , Difusão , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Dureza , Cinética , Teste de Materiais , Modelos Químicos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Propriedades de Superfície , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...