Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 130: 104189, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33493961

RESUMO

PURPOSE: The purpose of this study was to evaluate the accuracy of minute ventilation (V˙E) estimation using a novel method based on a non-linear algorithm coupled with cycle-based features. The experiment protocol was well adapted for remote health monitoring applications by exploiting data streams from respiratory magnetometer plethysmography (RMP) during different physical activity (PA) types. Methods Thirteen subjects with an age distribution of 24.1±3.4 years performed thirteen PA ranging from sedentary to moderate intensity (walking at 4 and 6 km/h, running at 9 and 12 km/h, biking at 90 W and 110 W). In total, 3359 temporal segments of 10s were acquired using the Nomics RMP device while the iWorx spirometer was used for reference V˙E measurements. An artificial neural network (ANN) model based on respiration features was used to estimate V˙E and compared to the multiple linear regression (MLR) model. We also compared the subject-specific approach with the subject-independent approach. Results The ANN model using subject-specific approach achieved better accuracy for the V˙E estimation. The bias was between 0.20±0.87 and 0.78±3 l/min with the ANN model as compared to 0.73±3.19 and 4.17±2.61 l/min with the MLR model. Conclusion Our results demonstrated the pertinence of processing data streams from wearable RMP device to estimate the V˙E with sufficient accuracy for various PA types. Due to its low-complexity and real-time algorithm design, the current approach can be easily integrated into most remote health monitoring applications coupled with wearable sensors.


Assuntos
Pletismografia , Dispositivos Eletrônicos Vestíveis , Adulto , Algoritmos , Humanos , Redes Neurais de Computação , Respiração , Adulto Jovem
2.
Physiol Meas ; 40(3): 03TR01, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30818285

RESUMO

The precise measurement of respiratory variables, such as tidal volume, minute ventilation, and respiratory rate, is necessary to monitor respiratory status, overcome several diseases, improve patient health conditions and reduce health care costs. This measurement has conventionally been performed by breathing into a mouthpiece connected to a flow rate measuring device. However, a mouthpiece can be uncomfortable for the subject and is difficult to use for long-term monitoring. Other noninvasive systems and devices have been developed that do not require a mouthpiece to quantitatively measure respiratory variables. These techniques are based on measuring size changes of the rib cage (RC) and abdomen (ABD), as lung volume is known to be a function of these variables. Among these systems, we distinguish respiratory inductive plethysmography (RIP), respiratory magnetometer plethysmography (RMP), and optoelectronic plethysmography devices. However, these devices should be previously calibrated for the correct evaluation of respiratory variables. The most popular calibration methods are isovolume manoeuvre calibration (ISOCAL), qualitative diagnostic calibration (QDC), multiple linear regression (MLR) and artificial neural networks (ANNs). The aim of this review is first to present how thoracoabdominal breathing distances can be used to estimate respiratory variables and second to present the different techniques and calibration methods used for this purpose.


Assuntos
Abdome/fisiologia , Respiração , Testes de Função Respiratória/métodos , Tórax/fisiologia , Calibragem , Humanos
3.
Eur J Appl Physiol ; 117(8): 1533-1555, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28612121

RESUMO

PURPOSE: The purposes of this study were to both improve the accuracy of respiratory volume (V) estimates using the respiratory magnetometer plethysmography (RMP) technique and facilitate the use of this technique. METHOD: We compared two models of machine learning (ML) for estimating [Formula: see text]: a linear model (multiple linear regression-MLR) and a nonlinear model (artificial neural network-ANN), and we used cross-validation to validate these models. Fourteen healthy adults, aged [Formula: see text] years participated in the present study. The protocol was conducted in a laboratory test room. The anteroposterior displacements of the rib cage and abdomen, and the axial displacements of the chest wall and spine were measured using two pairs of magnetometers. [Formula: see text] was estimated from these four signals, and the respiratory volume was simultaneously measured using a spirometer ([Formula: see text]) under lying, sitting and standing conditions as well as various exercise conditions (working on computer, treadmill walking at 4 and 6 km[Formula: see text], treadmill running at 9 and 12  km [Formula: see text] and ergometer cycling at 90 and 110 W). RESULTS: The results from the ANN model fitted the spirometer volume significantly better than those obtained through MLR. Considering all activities, the difference between [Formula: see text] and [Formula: see text] (bias) was higher for the MLR model ([Formula: see text] L) than for the ANN model ([Formula: see text] L). CONCLUSION: Our results demonstrate that this new processing approach for RMP seems to be a valid tool for estimating V with sufficient accuracy during lying, sitting and standing and under various exercise conditions.


Assuntos
Medidas de Volume Pulmonar/métodos , Modelos Biológicos , Respiração , Mecânica Respiratória/fisiologia , Adulto , Feminino , Humanos , Aprendizado de Máquina , Masculino , Consumo de Oxigênio , Adulto Jovem
4.
J Appl Physiol (1985) ; 121(2): 577-88, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27402559

RESUMO

The objective of this study was to assess the accuracy of using speed and grade data obtained from a low-cost global positioning system (GPS) receiver to estimate metabolic rate (MR) during level and uphill outdoor walking. Thirty young, healthy adults performed randomized outdoor walking for 6-min periods at 2.0, 3.5, and 5.0 km/h and on three different grades: 1) level walking, 2) uphill walking on a 3.7% mean grade, and 3) uphill walking on a 10.8% mean grade. The reference MR [metabolic equivalents (METs) and oxygen uptake (V̇o2)] values were obtained using a portable metabolic system. The speed and grade were obtained using a low-cost GPS receiver (1-Hz recording). The GPS grade (Δ altitude/distance walked) was calculated using both uncorrected GPS altitude data and GPS altitude data corrected with map projection software. The accuracy of predictions using reference speed and grade (actual[SPEED/GRADE]) data was high [R(2) = 0.85, root-mean-square error (RMSE) = 0.68 MET]. The accuracy decreased when GPS speed and uncorrected grade (GPS[UNCORRECTED]) data were used, although it remained substantial (R(2) = 0.66, RMSE = 1.00 MET). The accuracy was greatly improved when the GPS speed and corrected grade (GPS[CORRECTED]) data were used (R(2) = 0.82, RMSE = 0.79 MET). Published predictive equations for walking MR were also cross-validated using actual or GPS speed and grade data when appropriate. The prediction accuracy was very close when either actual[SPEED/GRADE] values or GPS[CORRECTED] values (for level and uphill combined) or GPS speed values (for level walking only) were used. These results offer promising research and clinical applications related to the assessment of energy expenditure during free-living walking.


Assuntos
Actigrafia/métodos , Metabolismo Energético/fisiologia , Sistemas de Informação Geográfica , Modelos Biológicos , Consumo de Oxigênio/fisiologia , Esforço Físico/fisiologia , Caminhada/fisiologia , Adulto , Algoritmos , Simulação por Computador , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
JPEN J Parenter Enteral Nutr ; 38(8): 926-38, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24743390

RESUMO

Precise measurement of sedentary behavior and physical activity is necessary to characterize the dose-response relationship between these variables and health outcomes. The most frequently used methods employ portable devices to measure mechanical or physiological parameters (eg, pedometers, heart rate monitors, accelerometers). There is considerable variability in the accuracy of total energy expenditure (TEE) estimates from these devices. This review examines the potential of measurement of ventilation (VE) to provide an estimate of free-living TEE. The existence of a linear relationship between VE and energy expenditure (EE) was demonstrated in the mid-20th century. However, few studies have investigated this parameter as an estimate of EE due to the cumbersome equipment required to measure VE. Portable systems that measure VE without the use of a mouthpiece have existed for about 20 years (respiratory inductive plethysmography). However, these devices are adapted for clinical monitoring and are too cumbersome to be used in conditions of daily life. Technological innovations of recent years (small electromagnetic coils glued on the chest/back) suggest that VE could be estimated from variations in rib cage and abdominal distances. This method of TEE estimation is based on the development of individual/group calibration curves to predict the relationship between ventilation and oxygen consumption. The new method provides a reasonably accurate estimate of TEE in different free-living conditions such as sitting, standing, and walking. Further work is required to integrate these electromagnetic coils into a jacket or T-shirt to create a wearable device suitable for long-term use in free-living conditions.


Assuntos
Metabolismo Energético , Monitorização Ambulatorial/métodos , Movimento , Consumo de Oxigênio , Esforço Físico , Respiração , Fenômenos Eletromagnéticos , Humanos , Pletismografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...