Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(25): 27289-27299, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38947836

RESUMO

Hydroxycarboxylic acids, viz., α-hydroxyisobutyric acid (HIBA) and mandelic acid (MA), have been widely employed as eluents for inner transition metal separation studies. Both extractants have identical functional groups (OH and COOH) with different side-chains. Despite their similarities in binding motifs, they show different retention behaviors for thorium and uranium in liquid chromatography. To understand the mechanism behind the trend, a detailed study on the aqueous phase interaction of thorium with both extractants is carried out by speciation, spectroscopy, and density functional theory-based calculations. Potentiometric titration experiments are carried out to reveal the stability and species formed. Electrospray ionization mass spectrometry is performed to identify the formation of different species by Th with both HIBA and MA. It is seen that for Th-HIBA and Th-MA, the dominating species are ML3 and ML4, respectively. A similar pattern observed in potentiometric speciation analysis supports the tendency of Th to form higher stoichiometric species with MA than with HIBA. The difference in the dominating species thus helps in explaining the reversal in the retention behavior of uranium and thorium in the reverse-phase liquid chromatographic separation. The results obtained are corroborated with extended X-ray absorption fine structure spectroscopic measurements and density functional theory (DFT) calculations.

2.
Inorg Chem ; 62(24): 9391-9399, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37269355

RESUMO

Tetraphenylethane-1,2-diylbis(phosphoramidate) in conjugation with a room temperature ionic liquid in chloroform medium is reported for the first time in the liquid-liquid extraction of thorium (Th). The extracted Th(IV) is collected as a white solid in the organic medium, thereby facilitating its easy separation. A high distribution ratio (D) of (12.4 ± 0.1) × 103 in 2-8 mol L-1 acidity range and high decontamination factors (α) of Th(IV) from uranium, lanthanides, and a number of transition elements makes this extraction process versatile and selective. A number of experimental investigations in synergism with extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) studies are interpreted to confirm the structure of the chelated complex. A 1:2 metal/ligand complex in which the two oxygen and two nitrogen atoms of each bis(phosphoramidate) molecule satisfying the eight coordination sites of Th(IV) is found to be formed. The extracted white solid thorium complex is easily converted to ThO2 after washing and heating at 1300 °C under O2 atmosphere. This work is expected to find direct application in the thorium fuel cycle, especially in the mining process of thorium from its ores and in the separation of fissile 233U from fertile 232Th in irradiated fuel.

3.
Analyst ; 147(21): 4724-4729, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36222198

RESUMO

Understanding the parametric optimization and addition of modifications in existing techniques are the keys to successful research in the analytical sciences. The present study reports an electroanalytical technique by modifying an electrode with PEDOT-PSS and adjusting the analyte solution to lower acidity (0.05 M) levels. The proposed methodology achieved a detection limit of 1.24 ppb of uranium, which is far below the available concentrations of uranium in seawater; the WHO permissible limit for uranium in drinking water; and the allowed disposal limit for uranium in radioactive waste solutions. Redox characteristics and speciation analysis supported by theoretical prediction helped to understand the basic mechanism which lay behind the achievement of such low detection limits. The technique was successfully employed for uranium determination in real water samples and the results were validated by another independent technique (ICP-MS).

4.
Inorg Chem ; 61(39): 15452-15462, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36123167

RESUMO

Carbon and phosphorous are two primary elements common to the bio-geosphere and are omnipresent in both biotic and abiotic arenas. Phosphonate and carboxylate are considered as building blocks of glyphosate and humic substances and constituents of the cellular wall of bacteria and are the driving functionalities for most of the chemical interactions involving these two elements. Phosphonocarboxylates, a combination of both the functionalities in one moiety, are ideal models to dig deep into for understanding the chemical interactions of the two functional groups with metal ions. Phosphorous and carbon majorly exist as inorganic/organic phosphate and carboxylate, respectively, in the bio-geosphere. Aquatic contamination is a major concern for uranium, and the presence of complexing agents would alter the uranium concentrations in aquifers. Determination of solution thermodynamic parameters, speciation plots, redox patterns, Eh-pH diagrams, coordination structures, and molecular-level understanding by density functional theory calculations was carried out to interpret the uranyl (UO22+) interaction with three environmentally relevant phosphonocarboxylates, namely, phosphono-formic acid (PFA), phosphono-acetic acid (PAA), and phosphono-propanoic acid (PPA). UO22+ forms 1:1 complexes with the three phosphonocarboxylates in the monoprotonated form, having nearly the same stability, and the complexes [UO2(PFAH)], [UO2(PAAH)], and [UO2(PPAH)] involve chelate formation of five, six, and seven membered rings, respectively, through the participation of an oxygen each from the carboxylate and phosphonate, strengthened by an intra-molecular hydrogen bonding through the proton of the phosphonate moiety with uranyl oxygen. The complex formations are favored both enthalpically and entropically, with the latter being more contributive to the overall free energy of formation. The redox speciation showed an aqueous soluble complex formation over a wide pH range of 1-8. Electrospray ionization mass spectrometry and extended X-ray absorption fine structure established the coordination modes, which are further corroborated by density functional calculations. The knowledge gained from the present studies provide potential inputs in framing the cleanup, sequestering, microbial, and bio-remediation strategies for uranyl from aquatic environments.


Assuntos
Organofosfonatos , Urânio , Carbono , Ácidos Carboxílicos , Substâncias Húmicas , Íons , Organofosfatos , Oxirredução , Oxigênio , Prótons , Urânio/química
5.
Environ Sci Process Impacts ; 24(4): 567-575, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35262110

RESUMO

The sorption process of radionuclides, often conducted at ambient temperature, shows significant sensitivity to the surrounding temperature. Prediction of fate and transport in the environment, therefore, requires accurate thermodynamic data of their species defining sorption-desorption onto solid surfaces. Herein, we examined the thermodynamics of uranium(VI), U(VI), sorption onto goethite with particular emphasis on directly calculating the enthalpy of U(VI) surface species formed under slightly acidic pH conditions. To achieve this aim, a sorption study of U(VI) was carried out on goethite in the pH range 3-10 and modelled using a 2-pK single-site diffuse layer surface complexation model. A binuclear bidentate species of U(VI), (FeO)2UO2, reproduces the sorption profile at pH 3-5 while the sorption was under-estimated in the pH >5 region. Precipitation of schoeptite at pH 5-8 was attributed to the underestimation of the predicted sorption behaviour. The species complexation constant was employed in the analysis of heat consumed, measured using an isothermal titration calorimeter, in the titration of the goethite suspension with U(VI) at pH 4.5 ± 0.1. Enthalpy for the U(VI) species was found to be 41 ± 7 kJ mol-1, suggesting that sorption is an entropically driven process. Comparing thermodynamic data with that of similar U(VI)-iron oxide systems, binding energy of U(VI) surface species, surface hydration and hydrogen binding are suggested as main factors in the sorbent role towards the thermodynamics of the sorption process.


Assuntos
Urânio , Adsorção , Concentração de Íons de Hidrogênio , Compostos de Ferro , Minerais , Termodinâmica , Urânio/análise
6.
Chem Commun (Camb) ; 58(8): 1111-1114, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34979537

RESUMO

Recovery of plutonium from aqueous carbonate waste solutions generated during the reprocessing of spent nuclear fuel is a key concern for sustainable nuclear energy programmes and the remediation of radioactive waste. Reported methods proceed through secondary waste generation caused by acidification of carbonate waste and make the recovery process cumbersome. Herein, we report a simple method for the recovery of Pu as solid PuO2 powder from carbonate waste solution in a two-step process. (i) Pu was selectively electrochemically precipitated as plutonium-hydroxide in the presence of interfering U, Th, Ru, Zr, Nb, Cs and the degradation products of tri-butyl phosphate by bulk electrolysis at -0.9 V using a Pt gauze electrode and (ii) the precipitate was annealed at 973 K for conversion to pure PuO2 powder. The present approach is simple, avoids the generation of secondary waste and reduces the exposure of working personnel to radiation.

7.
Dalton Trans ; 50(44): 16191-16204, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34724008

RESUMO

Neodymium (Nd), a technologically important metal ion, has emerged as a major contaminant in aquatic systems in recent years owing to its surge in electrical and electronic applications as a permanent magnet. The chelating molecules present in hydro- and biospheres could substantially enhance its absorption and lead to transportation and migration of Nd from the source. The mechanistic understanding of the Nd interaction with naturally relevant biomoieties present in flora and fauna is of primitive importance to estimate the toxicological effects of the metal ion. The present studies aimed at understanding the aquatic interaction of Nd with two biomoieties namely pyrazine-2-carboxylic acid (P2C) and pyrazine-2,3-dicarboxylic acid (P23C) by multiple experimental determinations and theoretical estimations. Potentiometry and spectrophotometry were employed to determine the aquatic speciation and thermodynamic stability of the complexes. Both techniques supported the formation of MLi (i = 1-4) complexes by Nd(III) with P2C and MLi (i = 1-3) complexes with P23C. The Nd-P23C complexes are more stable than the Nd-P2C complexes for ML formation, while the opposite trend is observed for the ML2 and ML3 complexes. Titration calorimetry was used to determine the enthalpies of complexation which was found to be exothermic and majorly favored by entropy contributions. The formation of the Nd(III)-P2C complexes is more exothermic than that of the respective Nd(III)-P23C complexes. Density functional theory was employed for the geometry optimization of the predicted complexes and for the estimation of the bond distances and partial charges on the coordinating atoms in the optimized geometries. Experimental insights provide crucial inputs at the macro (thermodynamic) level and theoretical calculations help in understanding the complexation process at the molecular level.

8.
Chemosphere ; 273: 129745, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33524762

RESUMO

Pyrazines are omnipresent in nature and have their occurrence in plants, microbes, food supplies, marine arenas. The present studies aimed at aquatic speciation of the neptunyl ion (NpO2+) with two pyrazine compounds namely pyrazine monocarboxylic acid (PMC) and pyrazine dicarboxylic acid (PDC). Absorption spectrophotometry was used to probe the stability, speciation and spectral properties for the complexation process. NpO2+ forms a more stable complex with PMC than PDC for 1:1 (ML), while for 1:2 (ML2) the opposite trend is observed. The extent of shift in λmax, which is also an indicator for the strength of complexation, reflected similar trends for the complexation process. Isothermal titration calorimetry was employed to determine the enthalpies of complex formation, which is found to be endothermic. The complexation process is entropy driven. Linear free energy correlations were established to retrieve the coordination modes of the complexes. The variation in peak potentials (the cyclic voltammograms) with change in pH and metal to ligand ratio were explored to understand redox speciation, electron transfer kinetics and Eh-pH characteristics for the interaction of NpO2+ with pyrazine carboxylate ligands. Density functional theory calculations were employed to optimize the geometries and to calculate the bond distances and partial charges on key atoms of the optimized geometries. The theoretical calculations helped to reveal the contributions from two different configurations of the same geometry towards the optical absorption. The bond distances and partial charges estimated theoretically helped to understand the aqueous interactions at the molecular level.


Assuntos
Ácidos Carboxílicos , Metais , Cinética , Ligantes , Termodinâmica
9.
Chemosphere ; 271: 129547, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33445029

RESUMO

Thorium (Th) exposure to the human beings is a radiochemical hazard and the chelation therapy by suitable drugs is the major prevention approach to deal with. The present studies aimed at usage of pyrazinoic acid (PCA), which is a prodrug to treat tuberculosis, for its usage as decorporating agent for thorium from human body. The present studies provide a comprehensive knowledge on the chemical interaction and biological efficacy of pyrazinoic acid (PCA) for decorporation of Thorium from the human body. The thermodynamic parameters for Th-PCA speciation are determined by both experiment and theory. The potentiometric data analysis and Electro-Spray Ionization Mass Spectrometry (ESI-MS) studies revealed the formation of MLi (i = 1-4) species with the decrease in stepwise stability constants. All the species formations are endothermic reactions and are predominantly entropy-driven. Biological experiments using human erythrocytes, whole blood and normal human lung cells showed cytocompatibility and decorporation ability of PCA for Thorium. Density functional calculations have been carried out to get insights on interaction process at molecular level. The experimental results and theoretical predictions found to be in line with each other. Present findings on complexation of Th by PCA and its evaluation in human cells and blood would further motivate determination of its safety levels and decorporation efficacy in animal models.


Assuntos
Quelantes , Tório , Animais , Humanos , Pirazinamida/análogos & derivados , Termodinâmica
10.
Dalton Trans ; 50(4): 1486-1495, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33439174

RESUMO

Preparation of a stable U(v) complex in an aqueous medium is a challenging task owing to its disproportionation nature (conversion into more stable U(vi) and U(iv) species) and sensitivity to atmospheric oxygen. The stable uranyl (UO22+)/dipicolinic acid (DPA) complex ([U(VI)O2(DPA)(OH)(H2O)]-) was formed at pH 10.5-12.0, which was confirmed by potentiometric and spectrophotometric titrations, and NMR, ESI-MS and EXAFS spectroscopy. The complex [U(VI)O2(DPA)(OH)(H2O)]- can be electrochemically reduced on the Pt electrode at -0.9 eV (vs. Ag/AgCl) to [U(V)O2(DPA)(OH)(H2O)]2- in aqueous medium under an anaerobic environment. According to cyclic voltammetric analysis, a pair of oxidation and reduction waves at E'0 = -0.592 V corresponds to the [U(VI)O2(DPA)(OH)(H2O)]-/[U(V)O2(DPA)(OH)(H2O)]2- redox couple and the formation of [U(V)O2(DPA)(OH)(H2O)]2- was confirmed by the electron stoichiometry (n = 0.97 ± 0.05) of the reduction reaction of [U(VI)O2(DPA)(OH)(H2O)]-. The pentavalent uranyl complex [U(V)O2(DPA)(OH)(H2O)]2- was further characterized via UV-vis-NIR absorption spectrophotometry and X-ray absorption (XANES and EXAFS) spectroscopy. The [U(V)O2(DPA)(OH)(H2O)]2- complex is stable at pH 10.5-12.0 in anaerobic water for a few days. DFT calculation shows the strong complexing ability of DPA stabilizing the unstable oxidation state U(v) in aqueous medium.

11.
Chemosphere ; 269: 129327, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33385674

RESUMO

The extensive hydrolysis of tetravalent actinides leads to polynuclear formations through oxygen bridging facilitating the formation of colloids as end products. The pH, ionic strength has phenomenal effects on Thorium colloids formation. The quantitative estimation of colloids facilitates the fraction of soluble fraction into ionic, polymeric and colloidal forms of thorium. The colloids accountability and precipitate characterization explains the discrepancies in estimated solubility limits. The supernatants of long equilibrated (∼3 years) saturated thorium solution under various pH (5- 11) and ionic strengths (0-3 M NaClO4) were analysed by Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and Ion Chromatography (IC) to determine total and ionic thorium respectively. Laser Induced Breakdown Detection (LIBD) was employed to determine the colloid size and concentrations. The precipitates were characterized by calorimetry and XRD to determine the solubility limiting phase. The results of pH, IC, ICP-MS, and LIBD measurements on the aged thorium samples are discussed with regard to the mechanism of the formation of thorium colloids. The results revealed the formation of colloids having particle size (10-40 nm) at concentrations (109-1011 particles/mL). The colloids accountancy resulted in estimated solubility products to 2-4 orders lower than their inclusion as soluble thorium. The soluble thorium was fractionated quantitatively into ionic, polymeric and colloidal forms of thorium. The precipitates formed are found to be semi amorphous.


Assuntos
Coloides , Tório , Fracionamento Químico , Coloides/análise , Tamanho da Partícula , Solubilidade , Tório/análise
12.
Chemosphere ; 249: 126116, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32058132

RESUMO

The present studies interpret the speciation of uranyl (UO22+) with the most ubiquitous class of natural species named pyrazines in terms of stability, speciation and its identification, thermodynamics, spectral properties determined by a range of experimental techniques and further evidenced by theoretical insights. UO22+ forms ML and ML2 kind of species with a qualitative detection of ML3 species, while the ESI-MS identified the formation of all the complexes including ML3. Both the ligands act as bidentate chelators with a difference in ring size and coordinating atoms in the complex formed. The ML3 complexes involve the third ligand participation as monodentate via carboxylate only due to the restricted coordination number and space around the UO22+ ion to accommodate three ligand molecules in its primary coordination sphere. All the complexes are found to be endothermic and purely entropy driven formations. The complex formations showed redshift in the absorption spectra and the shift was further enhanced from ML to ML2 formation. The UO22+ ion redox properties are used to explore the redox potential and heterogeneous electron-transfer kinetic parameters as a function of pH and concentration of UO22+ in presence of pyrazine carboxylates. Interestingly, the cyclic voltammograms identified the ligands also as redox sensitive. The theoretical calculation gave inputs to understand the complex formation at the molecular level with major emphasis on geometry optimization, energetics, bonding parameters, molecular orbital diagrams and bond critical point analyses. The experimental observations in combination with theoretical addendum provided detailed knowledge on the interaction of UO22+ with pyrazine-2-carboxylate and pyrazine-2,3-dicarboxylates.


Assuntos
Pirazinas/química , Urânio/química , Poluentes Químicos da Água/química , Ácidos Carboxílicos , Cinética , Ligantes , Oxirredução , Termodinâmica , Compostos de Urânio/química
13.
Inorg Chem ; 58(16): 11180-11194, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31364362

RESUMO

The denticity, flexibility, and steric hindrance of the ligand are key factors in deciding the mode and number of coordination around a metal ion on complex formation. The thermodynamic aspects of lanthanide complexation with various multidentate ligands provides a significant insight into understand the coordination chemistry of lanthanides in framing the relevant metal organic networks for the applications in biological, biochemical and medical aspects. The pyrazine carboxylic acids are known to form many structurally important complexes and further can form chelates with coordination number of eight for europium in which more water molecules can be knocked out from the primary coordination sphere than demanded by denticity of the ligand. The present studies aimed at ESI-MS characterization and determination of the thermodynamic parameters (log ß, ΔG, ΔH, and ΔS), luminescence properties of europium complexes with pyrazine-2-carboxylate and pyrazine-2,3-dicarboxylate in aqueous solutions by experiment as well as theory. Time resolved luminescence spectroscopy supported by DFT calculations are carried out to optimize the stable geometries of the complexes with various modes of binding and coordination. Furthermore, the thermodynamic parameters estimated theoretically have been used to trace the path of complex formation.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 190: 150-163, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-28922641

RESUMO

The mononuclear complexes formed by Eu(III) with three isomeric pyridine monocarboxylate-N-oxides namely picolinic acid-N-oxide (PANO), nicotinic acid-N-oxide (NANO) and isonicotinic acid-N-oxide (IANO) in aqueous solutions were studied by potentiometry, luminescence spectroscopy and isothermal titration calorimetry (ITC) to determine the speciation, coordination, luminescence properties and thermodynamic parameters of the complexes formed during the course of the reaction. More stable six membered chelate complexes with stoichiometry (MLi, i=1-4) are formed by Eu(III) with PANO while non chelating ML and ML2 complexes are formed by NANO and IANO. The stability of Eu(III) complexes follow the order PANO>IANO>NANO. The ITC studies inferred an endothermic and innersphere complex formation of Eu(III)-PANO and Eu(III)-IANO whereas an exothermic and outer-sphere complex formation for Eu(III)-NANO. The luminescence life time data further supported the ITC results. Density functional theoretical calculations were carried out to optimize geometries of the complexes and to estimate the energies, structural parameters (bond distances, bond angles) and charges on individual atoms of the same. Theoretical approximations are found to be in good agreement with the experimental observations.

15.
J Chem Thermodyn ; 122: 13-22, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32226127

RESUMO

The feed wastes and waste water treatment plants are the major sources for the entry of N-oxides into the soils then to aquatic life. The complexation of actinides with potentially stable anthropogenic ligands facilitate the transportation and migration of the actinides from the source confinement. The present study describes the determination of thermodynamic parameters for the complexation of Th(IV) with the three isomeric pyridine monocarboxylates (PCNO) namely picolinic acid-N-oxide (PANO), nicotinic acid-N-oxide (NANO) and isonicotinic acid-N-oxide (IANO). The potentiometric and isothermal calorimetric titrations were carried out to determine the stability and enthalpy of the formations for all the Th(IV)-PCNO complexes. Th-PANO complexes are more stable than Th-NANO and Th-IANO complexes which can be attributed to chelate formation in the former complexes. Formation of all the Th-PCNO complexes are endothermic and are entropy driven. The geometries for all the predicted complexes are optimized the energies, bond distances and charges on individual atoms are obtained using TURBOMOLE software. The theoretical calculation corroborated the experimental determinations.

16.
Artigo em Inglês | MEDLINE | ID: mdl-28314204

RESUMO

Neptunyl ion as NpO2+ is the least reacting and most mobile radioactive species among all the actinides. The picolinic acid used for decontamination is co-disposed along with the radioactive waste. Thus, in long term storage of HLW, there is high possibility of interaction of actinides and long lived fission products with the picolinate and can cause migration. The complexation of NpO2+ with the three structural isomers of pyridine monocarboxylates provides an insight to explore the role of hetero atom (nitrogen) with respect to key binding moiety (carboxylate). In the present study, the log ß values, speciation and spectral properties of NpO2+ complexes with pyridine monocarboxylates viz. picolinate, nicotinate and isonicotinate, have been studied at 298K in 0.1M NaClO4 medium using spectrophotometry. The complexation reactions involving protonated ligands are always accompanied by protonation/deprotonation process; thus, the protonation constants of all the three pyridine monocarboxylates under same conditions were also determined by potentiometry. The spectrophotometric data analysis for complexation of NpO2+ with pyridine monocarboxylates indicated the presence of ML and ML2 complexes with log ß values of 2.96±0.04, 5.67±0.08 for picolinate, 1.34±0.09, 1.65±0.12 for nicotinate and 1.52±0.04, 2.39±0.06 for isonicotinate. The higher values of log ß for picolinate were attributed to chelation while in other two isomers, the binding is through carboxylate group only. Density Functional Theory (DFT) calculations were carried out to get optimized geometries and electrostatic charges on various atoms of the complexes and free pyridine monocarboxylates to support the experimental data. The higher stability of NpO2+ nicotinate and isonicotinate complexes compared to simple carboxylates and the difference in log ß between the two is due to the charge polarization from unbound nitrogen to the bound carboxylate oxygen atoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...