Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Cosmet Sci ; 37(6): 636-41, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26032853

RESUMO

OBJECTIVE: To examine the potential of non-animal collagens as a new option for cosmetic applications. METHODS: Non-animal collagens from three species, Streptococcus pyogenes, Solibacter usitatus and Methylobacterium sp 4-46, have been expressed as recombinant proteins in Escherichia coli using a cold-shock, pCold, expression system. The proteins were purified using either metal affinity chromatography or a simple process based on precipitation and proteolytic digestion of impurities, which is suitable for large-scale production. Samples were examined using a range of analytical procedures. RESULTS: Analyses by gel electrophoresis and mass spectrometry were used to examine the purity and integrity of the products. Circular dichroism spectroscopy showed stabilities around 38°C, and calculated pI values were from 5.4 to 8.6. UV-visible light spectroscopy showed the clarity of collagen solutions. The collagens were soluble at low ionic strength between pH 5 and pH 8, but were less soluble under more acidic conditions. At lower pH, the insoluble material was well dispersed and did not form the fibrous associations and aggregates found with animal collagens. The materials were shown to be non-cytotoxic to cells in culture. CONCLUSIONS: These novel, non-animal collagens may be potential alternatives to animal collagens for inclusion in cosmetic formulations.


Assuntos
Acidobacteria/química , Colágeno/química , Cosméticos , Methylobacterium/química , Streptococcus pyogenes/química
2.
J Ind Microbiol Biotechnol ; 23(1): 701-8, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10455505

RESUMO

Differing claims regarding the stability of the recombinant ethanologen E. coli KO11 are addressed here in batch and chemostat culture. In repeat batch culture, the organism was stable on glucose, mannose, xylose and galactose for at least three serial transfers, even in the absence of a selective antibiotic. Chemostat cultures on glucose were remarkably stable, but on mannose, xylose and a xylose/glucose mixture, they progressively lost their hyperethanologenicity. On xylose, the loss was irreversible, indicating genetic instability. The loss of hyperethanologenicity was accompanied by the production of high concentrations of acetic acid and by increasing biomass yields, suggesting that the higher ATP yield associated with acetate production may foster the growth of acetate-producing revertant strains. Plate counts on high chloramphenicol-containing medium, whether directly, or following preliminary growth on non-selective medium, were not a reliable indicator of high ethanologenicity during chemostat culture. In batch culture, the organism appeared to retain its promise for ethanol production from lignocellulosics and concerns that antibiotics may need to be included in all media appear unfounded.


Assuntos
Escherichia coli/metabolismo , Etanol/metabolismo , Reatores Biológicos , Cloranfenicol/farmacologia , Escherichia coli/genética , Fermentação , Galactose/metabolismo , Glucose/metabolismo , Manose , Mutação , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...