Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Discov Nano ; 19(1): 148, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264474

RESUMO

Gene therapy is an important tool for treating fetal diseases that allows for the delivery and integration of therapeutic genes into the genome of cells carrying mutations. Nanomolecules, like PAMAM dendrimers, have recently come into wider use for carrying vectors as they have several advantages over viral vectors. Namely, (1) tunable size and surface chemistry, (2) uniform size, (3) the ability to target specific tissues, and (4) the ability to carry large biomolecules and drugs. Recently, we demonstrated that 4th generation (G4) PAMAM dendrimer with a cystamine core and a non-toxic surface having 90% -OH and 10% -NH2 groups (D-Cys) could cross the blood-brain barrier following injection into the bloodstream. In the current study, as a proof of concept, we delivered the dendrimers alone (D-Cys) tagged with Cy5.5 (D-Cys-cy5.5) to healthy pregnant C57BL/6J mice to determine the fate of these dendrimers in the pregnant mice as well as in the fetus. Systematic diffusion of the D-Cys-cy5.5 was evaluated on gestational day 17 (3 days after injection) using in vivo imaging. This revealed that the dendrimer was taken up into circulation and away from the injection site. Analysis of sections by fluorescence microscopy showed that D-Cys-cy5.5 was able to successfully cross the maternal blood-brain barrier. However, analysis of the fetal brains failed to detect dendrimers in the central nervous system (CNS). Instead, they appeared to be retained in the placenta. This is one of the first studies to analyze the distribution of surface-modified PAMAM dendrimer in the pregnant mouse and fetus following systemic injection.

2.
bioRxiv ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39091860

RESUMO

Early stages of Huntington's disease (HD) before the onset of motor and cognitive symptoms are characterized by imbalanced excitatory and inhibitory output from the cortex to striatal and subcortical structures. The window before the onset of symptoms presents an opportunity to adjust the firing rate within microcircuits with the goal of restoring the impaired E/I balance, thereby preventing or slowing down disease progression. Here, we investigated the effect of presymptomatic cell-type specific manipulation of activity of pyramidal neurons and parvalbumin interneurons in the M1 motor cortex on disease progression in the R6/2 HD mouse model. Our results show that dampening excitation of Emx1 pyramidal neurons or increasing activity of parvalbumin interneurons once daily for 3 weeks during the pre-symptomatic phase alleviated HD-related motor coordination dysfunction. Cell-type-specific modulation to normalize the net output of the cortex is a potential therapeutic avenue for HD and other neurodegenerative disorders.

3.
ACS Appl Mater Interfaces ; 16(32): 41907-41915, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39083440

RESUMO

Polyamidoamine (PAMAM) dendrimers are nanoparticles that have a wide scope in the field of biomedicine. Previous evidence shows that the generation 4 (G4) dendrimers with a 100% amine surface (G4-NH2) are highly toxic to cells in vitro and in vivo due to their positively charged amine groups. To reduce the toxicity, we modified the surface of the dendrimers to have more neutral functional groups, with 10% of the surface covered with -NH2 and 90% of the surface covered with hydroxyl groups (-OH; G4-90/10). Our previous in vitro data show that these modified dendrimers are taken up by cells, neurons, and different types of stem cells in vitro and neurons and glial cells in vivo. The toxicity assay shows that these modified dendrimers are less toxic compared with G4-NH2 dendrimers. Moreover, prolonged dendrimer exposure (G1-90/10 and G4-90/10), up to 3 weeks following unilateral intrastriatal injections into the striatum of mice, showed that dendrimers have the tendency to migrate within the brain via corpus callosum at different rates depending on their size. We also found that there is a difference in migration between the G1 and G4 dendrimers based on their size differences. The G4 dendrimers migrate in the anterior and posterior directions as well as more laterally from the site of injection in the striatum compared to the G1 dendrimers. Moreover, the G4 dendrimers have unique projections from the site of injection to the cortical areas.


Assuntos
Dendrímeros , Dendrímeros/química , Dendrímeros/toxicidade , Animais , Camundongos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Masculino , Propriedades de Superfície
4.
Behav Brain Res ; 471: 115121, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-38945302

RESUMO

Controlled nigrostriatal dopamine release supports effective limb use during locomotion coordination that becomes compromised after this pathway deteriorates in Parkinson's Disease (PD). How dopamine release relates to active ongoing behavior control remains unknown. Restoring proper release strategy appears important to successful PD treatment with transplanted dopamine-producing stem cells. This is suggested by apparently distinct behavioral support from tonic or phasic release and corresponding requirements of requisite afferent control exhibited by intact nigrostriatal neurons. Our laboratory previously demonstrated that transplanted dopaminergic cells can elicit skilled movement recovery known to depend on phasic dopamine release. However, efforts to measure this movement-related dopamine release yielded seemingly paradoxical, incongruent results. In response, here we explored whether those previous observations derived from rapid reuptake transport into either transplanted cells or residual, lesion-surviving terminals. We confirmed this using minimal reuptake blockade during intrastriatal microdialysis. After unilateral dopamine depletion, rats received transplants and were subjected to our swimming protocol. Among dopamine-depleted and transplanted rats, treatment supported restoration of limb movement symmetry. Interestingly, subsequent reuptake-restricted microdialysis confirmed distinct swimming-induced dopamine increases clearly occurred among these lesioned/transplanted subjects. Thus, phasic firing control appears to contribute to transplant-derived recovery in Parkinsonian animals.


Assuntos
Modelos Animais de Doenças , Dopamina , Microdiálise , Animais , Dopamina/metabolismo , Masculino , Ratos , Mesencéfalo/metabolismo , Oxidopamina/farmacologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Corpo Estriado/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Extremidades , Substância Negra/metabolismo , Ratos Sprague-Dawley
9.
Brain Sci ; 11(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34827424

RESUMO

Combined treatments using polyphenols and omega fatty acids provide several therapeutic benefits for a variety of age-related disorders, including Alzheimer's disease (AD). Previously, we found a commercial product, Total Body Rhythm (TBR), consisting of tart cherry extract, a potent polyphenol, and omega fatty acids, significantly reduced memory, and neuropathological deficits in the 192 IgG-saporin mouse model of AD. The present study assessed the efficacy of TBR for treating behavioral and neuropathological deficits in the 5xFAD model of AD. Both 6- and 12-month-old 5xFAD mice and age-matched wild-type controls received TBR (60 mg/kg) or the equivalent dose of vehicle (0.5% methylcellulose) via oral administration, every other day for two months. All mice were tested in the open field (OF), novel object recognition (NOR), and the Morris water maze (MWM) tasks. In addition, neuronal morphology, neurodegeneration, Aß plaque load, and glial activation were assessed. TBR treatment reduced memory deficits in the MWM and NOR tests and lessened anxiety levels in the OF task, mostly in the 6-month-old male mice. TBR also protected against neuron loss, reduced activation of astrocytes and microglia, primarily in 6-month-old mice, and attenuated Aß deposition. These results suggest that the combination of tart cherry extract and omega fatty acids in TBR can reduce AD-like deficits in 5xFAD mice.

10.
Antioxidants (Basel) ; 10(10)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34679727

RESUMO

Despite its potent anti-amyloid properties, the utility of curcumin (Cur) for the treatment of Alzheimer's disease (AD) is limited due to its low bioavailability. Tetrahydrocurcumin (THC), a more stable metabolite has been found in Cur-treated tissues. We compared the anti-amyloid and neuroprotective properties of curcumin, bisdemethoxycurcumin (BDMC), demethoxycurcumin (DMC) and THC using molecular docking/dynamics, in-silico and in vitro studies. We measured the binding affinity, H-bonding capabilities of these compounds with amyloid beta protein (Aß). Dot blot assays, photo-induced cross linking of unmodified protein (PICUP) and transmission electron microscopy (TEM) were performed to monitor the Aß aggregation inhibition using these compounds. Neuroprotective effects of these derivatives were evaluated in N2a, CHO and SH-SY5Y cells using Aß42 (10 µM) as a toxin. Finally, Aß-binding capabilities were compared in the brain tissue derived from the 5× FAD mouse model of AD. We observed that THC had similar binding capability and Aß aggregation inhibition such as keto/enol Cur and it was greater than BDMC and DMC. All these derivatives showed a similar degree of neuroprotection in vitro and labeled Aß-plaques ex vivo. Overall, ECur and THC showed greater anti-amyloid properties than other derivatives. Therefore, THC, a more stable and bioavailable metabolite may provide greater therapeutic efficacy in AD than other turmeric derivatives.

11.
J Huntingtons Dis ; 10(4): 455-458, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34511507

RESUMO

The R6/2 murine model of Huntington's disease (HD) is extensively used in HD research. The current study replicates and extends previous work assessing the impact of housing R6/2 mice with healthy wild-type (WT) littermates on disease progression. The current study extends the previous finding by including male cohorts and the use of a standard diet and water regimen, as opposed to the enhanced diet used in the previous study. This study found that the inclusion of healthy wild-type (WT) littermates, alone, improved survivabilty in R6/2 mice, but did not have a significant impact on weight loss.


Assuntos
Doença de Huntington , Animais , Modelos Animais de Doenças , Habitação , Doença de Huntington/genética , Longevidade/genética , Masculino , Camundongos , Camundongos Transgênicos
12.
Antioxidants (Basel) ; 10(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199639

RESUMO

Metabolic dysfunction and immune disorders are common in Alzheimer's disease (AD). The mechanistic details of these epiphenomena in AD are unclear. Here, we have investigated whether a highly bioavailable curcuminoid formulation, curcugreen (CGR), can prevent abnormalities in peripheral organs of two mouse models of AD. Eighteen- and 24-month-old male and female 3xTg and 5xFAD mice were treated with CGR (100 mg/kg) for 2 months, orally. Cytoarchitectural changes of spleen, liver, kidney and lungs were studied by H&E stain. Apoptotic death was confirmed by TUNEL staining. Amyloid deposition, pTau levels, proinflammatory, anti-inflammatory and cell death/survival markers were studied by Western blots. Curcugreen reduced the observed splenomegaly (3xTg) and degeneration of spleen, granulomatous inflammation in the kidney, hepatic sinusoidal disorganization, hepatocellular hypertrophy, inflammation of the central hepatic vein, infiltration and swelling of lung tissues, and apoptotic death in all these areas in both 3xTg and 5xFAD mice. Similarly, CGR decreased amyloid deposition, pTau, proinflammatory markers, cell loss and decrements in anti-inflammatory markers in both 3xTg and 5xFAD mice. Peripheral organ abnormalities and inflammatory responses in AD were ameliorated by curcuminoid treatment.

13.
Front Cell Dev Biol ; 9: 640212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041235

RESUMO

Modeling neurological disorders is challenging because they often have both endogenous and exogenous causes. Brain organoids consist of three-dimensional (3D) self-organizing brain tissue which increasingly is being used to model various aspects of brain development and disorders, such as the generation of neurons, neuronal migration, and functional networks. These organoids have been recognized as important in vitro tools to model developmental features of the brain, including neurological disorders, which can provide insights into the molecular mechanisms involved in those disorders. In this review, we describe recent advances in the generation of two-dimensional (2D), 3D, and blood-brain barrier models that were derived from induced pluripotent stem cells (iPSCs) and we discuss their advantages and limitations in modeling diseases, as well as explore the development of a vascularized and functional 3D model of brain processes. This review also examines the applications of brain organoids for modeling major neurodegenerative diseases and neurodevelopmental disorders.

14.
J Neurochem ; 158(3): 710-723, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33768569

RESUMO

Aging-induced proteinopathies, including deterioration of amyloid beta (Aß) conformation, are associated with reductions in endogenous levels of carnosine and cognitive impairments. Carnosine is a well-known endogenous antioxidant, which counteracts aging-induced Aß plaque formation. The aim of this study was to investigate the effects of exogenous carnosine treatments on aging-induced changes (a) in the steady-state level of endogenous carnosine and conformation of Aß secondary structure in the different brain regions (cerebral cortex, hippocampus, hypothalamus, pons-medulla, and cerebellum) and (b) cognitive function. Young (4 months) and aged (18 and 24 months) male albino Wistar rats were treated with carnosine (2.0 µg kg-1  day-1 ; i.t.) or equivalent volumes of vehicle (saline) for 21 consecutive days and were tested for cognition using 8-arm radial maze test. Brains were processed to assess the conformational integrity of Aß plaques using Raman spectroscopy and endogenous levels of carnosine were measured in the brain regions using HPLC. Results indicated that carnosine treatments improved the aging-induced deficits in cognitive function and reduced the ß-sheets in the secondary structure of Aß protein, as well as mitigating the reduction in the steady-state levels of carnosine and spine density in the brain regions examined. These results thus, suggest that carnosine can attenuate the aging-induced: (a) conformational changes in Aß secondary structure by reducing the abundance of ß-sheets and reductions in carnosine content in the brain regions and (b) cognitive impairment.


Assuntos
Envelhecimento/efeitos dos fármacos , Peptídeos beta-Amiloides/química , Encéfalo/efeitos dos fármacos , Carnosina/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Degeneração Neural/tratamento farmacológico , Fragmentos de Peptídeos/química , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Carnosina/uso terapêutico , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Masculino , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Estrutura Secundária de Proteína , Ratos , Ratos Wistar
15.
Alzheimers Res Ther ; 13(1): 37, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33557949

RESUMO

BACKGROUND: Synaptic failure is one of the principal events associated with cognitive dysfunction in Alzheimer's disease (AD). Preservation of existing synapses and prevention of synaptic loss are promising strategies to preserve cognitive function in AD patients. As a potent natural anti-oxidant, anti-amyloid, and anti-inflammatory polyphenol, curcumin (Cur) shows great promise as a therapy for AD. However, hydrophobicity of natural Cur limits its solubility, stability, bioavailability, and clinical utility for AD therapy. We have demonstrated that solid lipid curcumin particles (SLCP) have greater therapeutic potential than natural Cur in vitro and in vivo models of AD. In the present study, we have investigated whether SLCP has any preservative role on affected dendritic spines and synaptic markers in 5xFAD mice. METHODS: Six- and 12-month-old 5xFAD and age-matched wild-type mice received oral administration of SLCP (100 mg/kg body weight) or equivalent amounts of vehicle for 2 months. Neuronal morphology, neurodegeneration, and amyloid plaque load were investigated from prefrontal cortex (PFC), entorhinal cortex (EC), CA1, CA3, and the subicular complex (SC). In addition, the dendritic spine density from apical and basal branches was studied by Golgi-Cox stain. Further, synaptic markers, such as synaptophysin, PSD95, Shank, Homer, Drebrin, Kalirin-7, CREB, and phosphorylated CREB (pCREB) were studied using Western blots. Finally, cognitive and motor functions were assessed using open-field, novel object recognition (NOR) and Morris water maze (MWM) tasks after treatment with SLCP. RESULTS: We observed an increased number of pyknotic and degenerated cells in all these brain areas in 5xFAD mice and SLCP treatment partially protected against those losses. Decrease in dendritic arborization and dendritic spine density from primary, secondary, and tertiary apical and basal branches were observed in PFC, EC, CA1, and CA3 in both 6- and 12-month-old 5xFAD mice, and SLCP treatments partially preserved the normal morphology of these dendritic spines. In addition, pre- and postsynaptic protein markers were also restored by SLCP treatment. Furthermore, SLCP treatment improved NOR and cognitive function in 5xFAD mice. CONCLUSIONS: Overall, these findings indicate that use of SLCP exerts neuroprotective properties by decreasing amyloid plaque burden, preventing neuronal death, and preserving dendritic spine density and synaptic markers in the 5xFAD mice.


Assuntos
Doença de Alzheimer , Amiloidose , Curcumina , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Curcumina/farmacologia , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Fatores de Troca do Nucleotídeo Guanina , Hipocampo/metabolismo , Humanos , Lipídeos , Camundongos , Camundongos Transgênicos
16.
Int J Mol Sci ; 22(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467075

RESUMO

Recent clinical and epidemiological studies support the contention that diabetes mellitus (DM) is a strong risk factor for the development of Alzheimer's disease (AD). The use of insulin cell toxin, streptozotocin (STZ), when injected into the lateral ventricles, develops an insulin resistant brain state (IRBS) and represents a non-transgenic, or sporadic AD model (SAD), with several AD-like neuropathological features. The present study explored the effects of an anti-diabetic drug, liraglutide (LIR), in reversing major pathological hallmarks in the prodromal disease stage of both the 5xFAD transgenic and SAD mouse models of AD. Three-month-old 5xFAD and age-matched wild type mice were given a single intracerebroventricular (i.c.v) injection of STZ or vehicle (saline) and were subsequently treated with LIR, intraperitoneally (IP), once a day for 30 days. The extent of neurodegeneration, Aß plaque load, and key proteins associated with the insulin signaling pathways were measured using Western blot and neuroinflammation (via immunohistological assays) in the cortical and hippocampal regions of the brain were assessed following a series of behavioral tests used to measure cognitive function after LIR or vehicle treatments. Our results indicated that STZ significantly increased neuroinflammation, Aß plaque deposition and disrupted insulin signaling pathway, while 25 nmol/kg LIR, when injected IP, significantly decreased neuroinflammatory responses in both SAD and 5xFAD mice before significant cognitive changes were observed, suggesting LIR can reduce early neuropathology markers prior to the emergence of overt memory deficits. Our results indicate that LIR has neuroprotective effects and has the potential to serve as an anti-inflammatory and anti-amyloid prophylactic therapy in the prodromal stages of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Liraglutida/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doença de Alzheimer/etiologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/efeitos dos fármacos , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Liraglutida/administração & dosagem , Liraglutida/farmacologia , Camundongos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Presenilinas/genética , Estreptozocina/toxicidade
17.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333883

RESUMO

Huntington's disease (HD) is a genetic neurodegenerative disorder characterized by motor, cognitive, and psychiatric symptoms, accompanied by massive neuronal degeneration in the striatum. In this study, we utilized solid lipid curcumin particles (SLCPs) and solid lipid particles (SLPs) to test their efficacy in reducing deficits in YAC128 HD mice. Eleven-month-old YAC128 male and female mice were treated orally with SLCPs (100 mg/kg) or equivalent volumes of SLPs or vehicle (phosphate-buffered saline) every other day for eight weeks. Learning and memory performance was assessed using an active-avoidance task on week eight. The mice were euthanized, and their brains were processed using Golgi-Cox staining to study the morphology of medium spiny neurons (MSNs) and Western blots to quantify amounts of DARPP-32, brain-derived neurotrophic factor (BDNF), TrkB, synaptophysin, and PSD-95. We found that both SLCPs and SLPs improved learning and memory in HD mice, as measured by the active avoidance task. We also found that SLCP and SLP treatments preserved MSNs arborization and spinal density and modulated synaptic proteins. Our study shows that SLCPs, as well as the lipid particles, can have therapeutic effects in old YAC128 HD mice in terms of recovering from HD brain pathology and cognitive deficits.


Assuntos
Curcumina/administração & dosagem , Doença de Huntington/metabolismo , Doença de Huntington/psicologia , Lipossomos , Memória/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Animais , Biomarcadores , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Doença de Huntington/etiologia , Aprendizagem/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Receptor trkB/metabolismo
18.
Int J Mol Sci ; 21(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933008

RESUMO

Alzheimer's disease (AD) is characterized by amyloid (Aß) aggregation, hyperphosphorylated tau, neuroinflammation, and severe memory deficits. Reports that certain boronic compounds can reduce amyloid accumulation and neuroinflammation prompted us to compare trans-2-phenyl-vinyl-boronic-acid-MIDA-ester (TPVA) and trans-beta-styryl-boronic-acid (TBSA) as treatments of deficits in in vitro and in vivo models of AD. We hypothesized that these compounds would reduce neuropathological deficits in cell-culture and animal models of AD. Using a dot-blot assay and cultured N2a cells, we observed that TBSA inhibited Aß42 aggregation and increased cell survival more effectively than did TPVA. These TBSA-induced benefits were extended to C. elegans expressing Aß42 and to the 5xFAD mouse model of AD. Oral administration of 0.5 mg/kg dose of TBSA or an equivalent amount of methylcellulose vehicle to groups of six- and 12-month-old 5xFAD or wild-type mice over a two-month period prevented recognition- and spatial-memory deficits in the novel-object recognition and Morris-water-maze memory tasks, respectively, and reduced the number of pyknotic and degenerated cells, Aß plaques, and GFAP and Iba-1 immunoreactivity in the hippocampus and cortex of these mice. These findings indicate that TBSA exerts neuroprotective properties by decreasing amyloid plaque burden and neuroinflammation, thereby preventing neuronal death and preserving memory function in the 5xFAD mice.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Ácidos Borônicos/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Camundongos , Camundongos Transgênicos , Placa Amiloide/metabolismo , Memória Espacial/efeitos dos fármacos , Compostos de Sulfônio/farmacologia
19.
Pharmaceutics ; 12(7)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635142

RESUMO

Drug delivery to the brain is highly hindered by the presence of the blood-brain barrier (BBB), which prevents the entry of many potential drugs/biomolecules into the brain. One of the current strategies to achieve gene therapy for neurodegenerative diseases involves direct injection of a viral vector into the brain. There are various disadvantages of viral vectors, including limitations of cargo size and safety concerns. Nanomolecules, such as dendrimers, serve as an excellent alternative to viral delivery. In this study, as proof-of-concept, we used a surface-modified dendrimer complex and delivered large plasmids to cells in vitro and in vivo in healthy rats via intracranial injection. The dendrimers were biodegradable by chemicals found within cells and toxicity assays revealed that the modified dendrimers were much less toxic than unmodified amine-surface dendrimers. As mentioned in our previous publication, these dendrimers with appropriately modified surfaces are safe, can deliver large plasmids to the brain, and can overcome the cargo size limitations associated with viral vectors. The biocompatibility of this dendritic nanomolecule and the ability to finely tune its surface chemistry provides a gene delivery system that could facilitate future in vivo cellular reprograming and other gene therapies.

20.
Int J Nanomedicine ; 15: 2789-2808, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368055

RESUMO

Glioblastoma (GB) is a grade IV astrocytoma that maintains a poor prognosis with respect to current treatment options. Despite major advancements in the fields of surgery and chemoradiotherapy over the last few decades, the life expectancy for someone with glioblastoma remains virtually unchanged and warrants a new approach for treatment. Poly(amidoamine) (PAMAM) dendrimers are a type of nanomolecule that ranges in size (between 1 and 100 nm) and shape and can offer a new viable solution for the treatment of intracranial tumors, including glioblastoma. Their ability to deliver a variety of therapeutic cargo and penetrate the blood-brain barrier (BBB), while preserving low cytotoxicity, make them a favorable candidate for further investigation into the treatment of glioblastoma. Here, we present a systematic review of the current advancements in PAMAM dendrimer technology, including the wide spectrum of dendrimer generations formulated, surface modifications, core modifications, and conjugations developed thus far to enhance tumor specificity and tumor penetration for treatment of glioblastoma. Furthermore, we highlight the extensive variety of therapeutics capable of delivery by PAMAM dendrimers for the treatment of glioblastoma, including cytokines, peptides, drugs, siRNAs, miRNAs, and organic polyphenols. While there have been prolific results stemming from aggressive research into the field of dendrimer technology, there remains a nearly inexhaustible amount of questions that remain unanswered. Nevertheless, this technology is rapidly developing and is nearing the cusp of use for aggressive tumor treatment. To that end, we further highlight future prospects in focus as researchers continue developing more optimal vehicles for the delivery of therapeutic cargo.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Dendrímeros/química , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/tratamento farmacológico , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Dendrímeros/uso terapêutico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA