Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 7(3): 789-799, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28104670

RESUMO

The death of larval salivary gland cells during metamorphosis in Drosophila melanogaster has been a key system for studying steroid controlled programmed cell death. This death is induced by a pulse of the steroid hormone ecdysone that takes place at the end of the prepupal period. For many years, it has been thought that the ecdysone direct response gene Eip93F (E93) plays a critical role in initiating salivary gland cell death. This conclusion was based largely on the finding that the three "type" alleles of E93 cause a near-complete block in salivary gland cell death. Here, we show that these three mutations are in fact allelic to Idh3b, a nearby gene that encodes the ß subunit of isocitrate dehydrogenase 3, a mitochondrial enzyme of the tricarboxylic acid (TCA) cycle. The strongest of the Idh3b alleles appears to cause a near-complete block in oxidative phosphorylation, as mitochondria are depolarized in mutant larvae, and development arrests early during cleavage in embryos from homozygous-mutant germline mothers. Idh3b-mutant larval salivary gland cells fail to undergo mitochondrial fragmentation, which normally precedes the death of these cells, and do not initiate autophagy, an early step in the cell death program. These observations suggest a close relationship between the TCA cycle and the initiation of larval cell death. In normal development, tagged Idh3b is released from salivary gland mitochondria during their fragmentation, suggesting that Idh3b may be an apoptogenic factor that functions much like released cytochrome c in mammalian cells.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Isocitrato Desidrogenase/genética , Mitocôndrias/metabolismo , Mutação/genética , Trifosfato de Adenosina/metabolismo , Alelos , Animais , Autofagia/genética , Morte Celular/genética , Mapeamento Cromossômico , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Desenvolvimento Embrionário/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Isocitrato Desidrogenase/metabolismo , Larva/citologia , Larva/metabolismo , Glândulas Salivares/citologia , Glândulas Salivares/metabolismo , Transgenes
2.
Proc Natl Acad Sci U S A ; 109(8): 2949-54, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22308414

RESUMO

Hormonal control of sexual maturation is a common feature in animal development. A particularly dramatic example is the metamorphosis of insects, in which pulses of the steroid hormone ecdysone drive the wholesale transformation of the larva into an adult. The mechanisms responsible for this transformation are not well understood. Work in Drosophila indicates that the larval and adult forms are patterned by the same underlying sets of developmental regulators, but it is not understood how the same regulators pattern two distinct forms. Recent studies indicate that this ability is facilitated by a global change in the responsiveness of target genes during metamorphosis. Here we show that this shift is controlled in part by the ecdysone-induced transcription factor E93. Although long considered a dedicated regulator of larval cell death, we find that E93 is expressed widely in adult cells at the pupal stage and is required for many patterning processes at this time. To understand the role of E93 in adult patterning, we focused on a simple E93-dependent process, the induction of the Dll gene within bract cells of the pupal leg by EGF receptor signaling. In this system, we show that E93 functions to cause Dll to become responsive to EGF receptor signaling. We demonstrate that E93 is both necessary and sufficient for directing this switch. E93 likely controls the responsiveness of many other target genes because it is required broadly for patterning during metamorphosis. The wide conservation of E93 orthologs suggests that similar mechanisms control life-cycle transitions in other organisms, including vertebrates.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Genes de Insetos/genética , Metamorfose Biológica/efeitos dos fármacos , Metamorfose Biológica/genética , Esteroides/farmacologia , Fatores de Transcrição/genética , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Alelos , Animais , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Códon sem Sentido/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Receptores ErbB/metabolismo , Extremidades , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Homeodomínio/metabolismo , Modelos Biológicos , Fenótipo , Pupa/citologia , Pupa/efeitos dos fármacos , Pupa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Asas de Animais/efeitos dos fármacos , Asas de Animais/crescimento & desenvolvimento , Proteínas ras/metabolismo
3.
Dev Biol ; 347(1): 82-91, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20727877

RESUMO

It is currently thought that antennal target genes are activated in Drosophila by the combined action of Distal-less, homothorax, and extradenticle, and that the Hox gene Antennapedia prevents activation of antennal genes in the leg by repressing homothorax. To test these ideas, we analyze a 62bp enhancer from the antennal gene spineless that is specific for the third antennal segment. This enhancer is activated by a tripartite complex of Distal-less, Homothorax, and Extradenticle. Surprisingly, Antennapedia represses the enhancer directly, at least in part by competing with Distal-less for binding. We show that Antennapedia is required in the leg only within a proximal ring that coexpresses Distal-less, Homothorax and Extradenticle. We conclude that the function of Antennapedia in the leg is not to repress homothorax, as has been suggested, but to directly repress spineless and other antennal genes that would otherwise be activated within this ring.


Assuntos
Estruturas Animais/metabolismo , Proteína do Homeodomínio de Antennapedia/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Receptores de Hidrocarboneto Arílico/genética , Proteínas Repressoras/metabolismo , Animais , Sequência de Bases , Células Clonais , Drosophila melanogaster/citologia , Extremidades/embriologia , Genes de Insetos/genética , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica
4.
Dev Biol ; 302(2): 412-26, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17084833

RESUMO

The transformation of antenna to leg is a classical model for understanding segmental fate decisions in Drosophila. The spineless (ss) gene encodes a bHLH-PAS transcription factor that plays a key role in specifying the identity of distal antennal segments. In this report, we identify the antennal disc enhancer of ss and then use enhancer-lacZ reporters to work out how ss antennal expression is regulated. The antennal determinants Distal-less (Dll) and homothorax (hth) are key activators of the antennal enhancer. Dll is required continuously and, when present at elevated levels, can activate the enhancer in regions devoid of hth expression. In contrast, homothorax (hth) is required only transiently both for activation of the enhancer and for specification of the aristal portion of the antenna. The antennal enhancer is repressed by cut, which determines its proximal limit of expression, and by ectopic Antennapedia (Antp). Repression by Antp is not mediated by hth, suggesting that ss may be a direct target of Antp. Finally, we show that ss+ is not a purely passive target of its regulators: ss+ partially represses hth in the third antennal segment and lies upstream of Dll in the development of the maxillary palp primordia.


Assuntos
Proteínas de Drosophila/biossíntese , Drosophila/metabolismo , Elementos Facilitadores Genéticos , Receptores de Hidrocarboneto Arílico/biossíntese , Animais , Proteína do Homeodomínio de Antennapedia/biossíntese , Proteína do Homeodomínio de Antennapedia/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Extremidades/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Óperon Lac , Larva , Mutação , Pupa , Receptores de Hidrocarboneto Arílico/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
5.
Nature ; 440(7081): 174-80, 2006 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-16525464

RESUMO

Drosophila colour vision is achieved by R7 and R8 photoreceptor cells present in every ommatidium. The fly retina contains two types of ommatidia, called 'pale' and 'yellow', defined by different rhodopsin pairs expressed in R7 and R8 cells. Similar to the human cone photoreceptors, these ommatidial subtypes are distributed stochastically in the retina. The choice between pale versus yellow ommatidia is made in R7 cells, which then impose their fate onto R8. Here we report that the Drosophila dioxin receptor Spineless is both necessary and sufficient for the formation of the ommatidial mosaic. A short burst of spineless expression at mid-pupation in a large subset of R7 cells precedes rhodopsin expression. In spineless mutants, all R7 and most R8 cells adopt the pale fate, whereas overexpression of spineless is sufficient to induce the yellow R7 fate. Therefore, this study suggests that the entire retinal mosaic required for colour vision is defined by the stochastic expression of a single transcription factor, Spineless.


Assuntos
Percepção de Cores/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Receptores de Hidrocarboneto Arílico/metabolismo , Retina/embriologia , Retina/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Cor , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Modelos Biológicos , Mutação/genética , Receptores de Hidrocarboneto Arílico/genética , Retina/citologia , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/embriologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Processos Estocásticos
6.
Genetics ; 168(1): 161-80, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15454535

RESUMO

The pair-rule gene fushi tarazu (ftz) of Drosophila is expressed at the blastoderm stage in seven stripes that serve to define the even-numbered parasegments. ftz encodes a DNA-binding homeodomain protein and is known to regulate genes of the segment polarity, homeotic, and pair-rule classes. Despite intensive analysis in a number of laboratories, how ftz is regulated and how it controls its targets are still poorly understood. To help understand these processes, we conducted a screen to identify dominant mutations that enhance the lethality of a ftz temperature-sensitive mutant. Twenty-six enhancers were isolated, which define 21 genes. All but one of the mutations recovered show a maternal effect in their interaction with ftz. Three of the enhancers proved to be alleles of the known ftz protein cofactor gene ftz-f1, demonstrating the efficacy of the screen. Four enhancers are alleles of Atrophin (Atro), the Drosophila homolog of the human gene responsible for the neurodegenerative disease dentatorubral-pallidoluysian atrophy. Embryos from Atro mutant germ-line mothers lack the even-numbered (ftz-dependent) engrailed stripes and show strong ftz-like segmentation defects. These defects likely result from a reduction in Even-skipped (Eve) repression ability, as Atro has been shown to function as a corepressor for Eve. In this study, we present evidence that Atro is also a member of the trithorax group (trxG) of Hox gene regulators. Atro appears to be particularly closely related in function to the trxG gene osa, which encodes a component of the brahma chromatin remodeling complex. One additional gene was identified that causes pair-rule segmentation defects in embryos from homozygous mutant germ-line mothers. The single allele of this gene, called bek, also causes nuclear abnormalities similar to those caused by alleles of the Trithorax-like gene, which encodes the GAGA factor.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/metabolismo , Animais , Padronização Corporal/genética , Clonagem Molecular , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Elementos Facilitadores Genéticos/genética , Imunofluorescência , Fatores de Transcrição Fushi Tarazu , Testes Genéticos , Proteínas de Homeodomínio/genética , Imuno-Histoquímica , Fatores de Transcrição/genética
7.
Dev Dyn ; 226(1): 67-81, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12508226

RESUMO

The mammalian NAB proteins have been identified previously as potent co-repressors of the EGR family of zinc finger transcription factors. Drosophila NAB (dNAB), like its mammalian counterparts, binds EGR1 and represses EGR1-mediated transcriptional activation from a synthetic promoter. In contrast, dNAB does not bind the Drosophila EGR-related protein klumpfuss. dnab RNA is expressed exclusively in a subset of neuroblasts in the embryonic and larval central nervous system (CNS), as well as in several larval imaginal disc tissues. Here, we describe the creation of targeted deletion mutations in the dnab gene and the identification of additional, EMS-induced dnab mutations by genetic complementation analysis. Null alleles in dnab cause larval locomotion defects and early larval lethality (L1-L2). A putative hypomorphic allele in dnab instead causes early adult lethality due to severe locomotion defects. In the dnab -/- CNS, axon outgrowth/guidance and glial development appear normal; however, a subset of eve+ neurons forms in reduced numbers. In addition, mosaic analysis in the eye reveals that dnab -/- clones are either very small or absent. Similarly, dNAB overexpression in the eye causes eyes to be very small with few ommatidia. These dramatic eye-specific phenotypes will prove useful for enhancer/suppressor screens to identify dnab-interacting genes.


Assuntos
Sistema Nervoso Central/embriologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila , Drosophila/embriologia , Proteínas Imediatamente Precoces , Células Fotorreceptoras de Invertebrados/embriologia , Proteínas Repressoras/biossíntese , Proteínas Repressoras/fisiologia , Fatores de Transcrição/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Cruzamentos Genéticos , Proteína 1 de Resposta de Crescimento Precoce , Embrião não Mamífero/metabolismo , Deleção de Genes , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Neurônios/metabolismo , Fenótipo , Ligação Proteica , RNA Mensageiro/metabolismo , Recombinação Genética , Homologia de Sequência de Aminoácidos , Transcrição Gênica , Ativação Transcricional , Transfecção , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...