Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Virol ; 62: 101363, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37672875

RESUMO

As a group, influenza-A viruses (IAV) infect a wide range of animal hosts, however, they are constrained to infecting selected host species by species-specific interactions between the host and virus, that are required for efficient replication of the viral RNA genome. When IAV cross the species barrier, they acquire mutations in the viral genome to enable interactions with the new host factors, or to compensate for their loss. The viral polymerase genes polymerase basic 1, polymerase basic 2, and polymerase-acidic are important sites of host adaptation. In this review, we discuss why the viral polymerase is so vital to the process of host adaptation, look at some of the known viral mutations, and host factors involved in adaptation, particularly of avian IAV to mammalian hosts.


Assuntos
Vírus da Influenza A , Animais , Vírus da Influenza A/genética , Genes Virais , Genoma Viral , Especificidade de Hospedeiro , Mutação , Mamíferos
2.
iScience ; 26(5): 106736, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37216095

RESUMO

In our increasingly interconnected world, natural hazards and their impacts spread across geographical, administrative, and sectoral boundaries. Owing to the interrelationships between multi-hazards and socio-economic dimensions, the impacts of these types of events can surmount those of multiple single hazards. The complexities involved in tackling multi-hazards and multi-risks hinder a more holistic and integrative perspective and make it difficult to identify overarching dimensions important for assessment and management purposes. We contribute to this discussion by building on systemic risk research, especially the focus on interconnectedness, and suggest ways forward for an integrated multi-hazard and multi-risk framework that should be beneficial in real-world applications. In this article, we propose a six-step framework for analyzing and managing risk across a spectrum ranging from single-to multi- and systemic risk.

3.
Viruses ; 10(3)2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510577

RESUMO

Ectromelia virus (ECTV) is an orthopoxvirus and the causative agent of mousepox. Like other poxviruses such as variola virus (agent of smallpox), monkeypox virus and vaccinia virus (the live vaccine for smallpox), ECTV promotes actin-nucleation at the surface of infected cells during virus release. Homologs of the viral protein A36 mediate this function through phosphorylation of one or two tyrosine residues that ultimately recruit the cellular Arp2/3 actin-nucleating complex. A36 also functions in the intracellular trafficking of virus mediated by kinesin-1. Here, we describe the generation of a recombinant ECTV that is specifically disrupted in actin-based motility allowing us to examine the role of this transport step in vivo for the first time. We show that actin-based motility has a critical role in promoting the release of virus from infected cells in vitro but plays a minor role in virus spread in vivo. It is likely that loss of microtubule-dependent transport is a major factor for the attenuation observed when A36R is deleted.


Assuntos
Actinas/metabolismo , Vírus da Ectromelia/fisiologia , Ectromelia Infecciosa/metabolismo , Ectromelia Infecciosa/virologia , Liberação de Vírus , Animais , Transporte Biológico , Linhagem Celular , Chlorocebus aethiops , Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Mutação , Ligação Proteica , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
Arch Sex Behav ; 44(6): 1685-95, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25828990

RESUMO

Women's breast morphology is thought to have evolved via sexual selection as a signal of maturity, health, and fecundity. While research demonstrates that breast morphology is important in men's judgments of women's attractiveness, it remains to be determined how perceptions might differ when considering a larger suite of mate relevant attributes. Here, we tested how variation in breast size and areolar pigmentation affected perceptions of women's sexual attractiveness, reproductive health, sexual maturity, maternal nurturing abilities, and age. Participants (100 men; 100 women) rated images of female torsos modeled to vary in breast size (very small, small, medium, and large) and areolar pigmentation (light, medium, and dark) for each of the five attributes listed above. Sexual attractiveness ratings increased linearly with breast size, but large breasts were not judged to be significantly more attractive than medium-sized breasts. Small and medium-sized breasts were rated as most attractive if they included light or medium colored areolae, whereas large breasts were more attractive if they had medium or dark areolae. Ratings for perceived age, sexual maturity, and nurturing ability also increased with breast size. Darkening the areolae reduced ratings of the reproductive health of medium and small breasts, whereas it increased ratings for large breasts. There were no significant sex differences in ratings of any of the perceptual measures. These results demonstrate that breast size and areolar pigmentation interact to determine ratings for a suite of sociosexual attributes, each of which may be relevant to mate choice in men and intra-sexual competition in women.


Assuntos
Beleza , Heterossexualidade/psicologia , Saúde Reprodutiva , Comportamento Sexual/psicologia , Pigmentação da Pele , Percepção Visual , Adulto , Feminino , Humanos , Masculino , Estimulação Luminosa , Parceiros Sexuais/psicologia
5.
Mol Biochem Parasitol ; 199(1-2): 9-18, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25791316

RESUMO

Trypanosoma brucei, the causative agent for African trypanosomiasis, possesses a single mitochondrion that imports hundreds of proteins from the cytosol. However, the parasite only possesses a few homologs of the canonical protein translocases found in fungi and animals. We recently characterized a homolog of the translocase of the mitochondrial inner membrane, Tim50, in T. brucei. TbTim50 knockdown (KD) moderately reduced cell growth, decreased the mitochondrial membrane potential, and inhibited import of proteins into mitochondria. In contrast to Tim50 KD, we show here that TbTim50 overexpression (OE) increased the mitochondrial membrane potential as well as increased the production of cellular reactive oxygen species (ROS). Therefore, TbTim50 OE also inhibits cell growth. In addition, TbTim50 OE and KD cells showed different responses upon treatment with H2O2. Surprisingly, TbTim50 KD cells showed a greater tolerance to oxidative stress. Further analysis revealed that TbTim50 KD inhibits transition of cells from an early to late apoptotic stage upon exposure to increasing concentrations of H2O2. On the other hand TbTim50 OE caused cells to be in a pro-apoptotic stage and thus they underwent increased cell death upon H2O2 treatment. However, externally added H2O2 similarly increased the levels of cellular ROS and decreased the mitochondrial membrane potential in both cell types, indicating that tolerance to ROS is mediated through induction of the stress-response pathway due to TbTim50 KD. Together, these results suggest that TbTim50 acts as a stress sensor and that down regulation of Tim50 could be a survival mechanism for T. brucei exposed to oxidative stress.


Assuntos
Regulação da Expressão Gênica , Estresse Oxidativo , Peptidil Transferases/biossíntese , Estresse Fisiológico , Trypanosoma brucei brucei/fisiologia , Sobrevivência Celular , Regulação para Baixo , Peróxido de Hidrogênio/toxicidade , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio/metabolismo , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento
6.
J Biol Chem ; 288(5): 3184-97, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23212919

RESUMO

In eukaryotes, proteins are imported into mitochondria via multiprotein translocases of the mitochondrial outer and inner membranes, TOM and TIM, respectively. Trypanosoma brucei, a hemoflagellated parasitic protozoan and the causative agent of African trypanosomiasis, imports about a thousand proteins into the mitochondrion; however, the mitochondrial protein import machinery in this organism is largely unidentified. Here, we characterized a homolog of Tim50 that is localized in the mitochondrial membrane in T. brucei. Similar to Tim50 proteins from fungi and mammals, Tim50 in T. brucei (TbTim50) possesses a mitochondrial targeting signal at its N terminus and a C-terminal domain phosphatase motif at its C terminus. Knockdown of TbTim50 reduced cell growth and inhibited import of proteins that contain N-terminal targeting signals. Co-immunoprecipitation analysis revealed that TbTim50 interacts with TbTim17. Unlike its fungal counterpart but similar to the human homolog of Tim50, recombinant TbTim50 possesses a dual specificity phosphatase activity with a greater affinity for protein tyrosine phosphate than for protein serine/threonine phosphate. Mutation of the aspartic acid residues to alanine in the C-terminal domain phosphatase motif (242)DXDX(V/T)(246) abolished activity for both type of substrates. TbTim50 knockdown increased and its overexpression decreased the level of voltage-dependent anion channel (VDAC). However, the VDAC level was unaltered when the phosphatase-inactive mutant of TbTim50 was overexpressed, suggesting that the phosphatase activity of TbTim50 plays a role in regulation of VDAC expression. In contrast, phosphatase activity of the TbTim50 is required neither for mitochondrial protein import nor for its interaction with TbTim17. Overall, our results show that TbTim50 plays additional roles in mitochondrial activities besides preprotein translocation.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/enzimologia , Ácido Aspártico/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Fosfatases de Especificidade Dupla/química , Técnicas de Silenciamento de Genes , Humanos , Imunoprecipitação , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Ligação Proteica , Sinais Direcionadores de Proteínas , Estrutura Secundária de Proteína , Transporte Proteico , Proteínas de Protozoários/química , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Frações Subcelulares/enzimologia , Trypanosoma brucei brucei/genética , Canais de Ânion Dependentes de Voltagem/metabolismo
7.
J Biol Chem ; 287(18): 14480-93, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22408251

RESUMO

Translocases of mitochondrial inner membrane (TIMs) are multiprotein complexes. The only Tim component so far characterized in kinetoplastid parasites such as Trypanosoma brucei is Tim17 (TbTim17), which is essential for cell survival and mitochondrial protein import. Here, we report that TbTim17 is present in a protein complex of about 1,100 kDa, which is much larger than the TIM complexes found in fungi and mammals. Depletion of TbTim17 in T. brucei impairs the mitochondrial import of cytochrome oxidase subunit IV, an N-terminal signal-containing protein. Pretreatment of isolated mitoplasts with the anti-TbTim17 antibody inhibited import of cytochrome oxidase subunit IV, indicating a direct involvement of the TbTim17 in the import process. Purification of the TbTim17-containing protein complex from the mitochondrial membrane of T. brucei by tandem affinity chromatography revealed that TbTim17 associates with seven unique as well as a few known T. brucei mitochondrial proteins. Depletion of three of these novel proteins, i.e. TbTim47, TbTim54, and TbTim62, significantly decreased mitochondrial protein import in vitro. In vivo targeting of a newly synthesized mitochondrial matrix protein, MRP2, was also inhibited due to depletion of TbTim17, TbTim54, and TbTim62. Co-precipitation analysis confirmed the interaction of TbTim54 and TbTim62 with TbTim17 in vivo. Overall, our data reveal that TbTim17, the single homolog of Tim17/22/23 family proteins, is present in a unique TIM complex consisting of novel proteins in T. brucei and is critical for mitochondrial protein import.


Assuntos
Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Proteínas Mitocondriais/genética , Transporte Proteico/fisiologia , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...