Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 72018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30024379

RESUMO

The integrated stress response (ISR) is activated by diverse forms of cellular stress, including endoplasmic reticulum (ER) stress, and is associated with diseases. However, the molecular mechanism(s) whereby the ISR impacts on differentiation is incompletely understood. Here, we exploited a mouse model of Metaphyseal Chondrodysplasia type Schmid (MCDS) to provide insight into the impact of the ISR on cell fate. We show the protein kinase RNA-like ER kinase (PERK) pathway that mediates preferential synthesis of ATF4 and CHOP, dominates in causing dysplasia by reverting chondrocyte differentiation via ATF4-directed transactivation of Sox9. Chondrocyte survival is enabled, cell autonomously, by CHOP and dual CHOP-ATF4 transactivation of Fgf21. Treatment of mutant mice with a chemical inhibitor of PERK signaling prevents the differentiation defects and ameliorates chondrodysplasia. By preventing aberrant differentiation, titrated inhibition of the ISR emerges as a rationale therapeutic strategy for stress-induced skeletal disorders.


Assuntos
Diferenciação Celular , Condrócitos/patologia , Osteocondrodisplasias/patologia , Estresse Fisiológico , Acetamidas/administração & dosagem , Acetamidas/farmacologia , Fator 4 Ativador da Transcrição/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/metabolismo , Condrogênese , Cicloexilaminas/administração & dosagem , Cicloexilaminas/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Lâmina de Crescimento/anormalidades , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/patologia , Hipertrofia , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fenótipo , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais , Estresse Fisiológico/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Transcriptoma/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , eIF-2 Quinase/metabolismo
2.
JCI Insight ; 3(2)2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29367466

RESUMO

Incomplete penetrance of congenital heart defects (CHDs) was observed in a mouse model. We hypothesized that the contribution of a major genetic locus modulates the manifestation of the CHDs. After genome-wide linkage mapping, fine mapping, and high-throughput targeted sequencing, a recessive frameshift mutation of the heterogeneous nuclear ribonucleoprotein A1 (Hnrnpa1) gene was confirmed (Hnrnpa1ct). Hnrnpa1 was expressed in both the first heart field (FHF) and second heart field (SHF) at the cardiac crescent stage but was only maintained in SHF progenitors after heart tube formation. Hnrnpa1ct/ct homozygous mutants displayed complete CHD penetrance, including truncated and incomplete looped heart tube at E9.5, ventricular septal defect (VSD) and persistent truncus arteriosus (PTA) at E13.5, and VSD and double outlet right ventricle at P0. Impaired development of the dorsal mesocardium and sinoatrial node progenitors was also observed. Loss of Hnrnpa1 expression leads to dysregulation of cardiac transcription networks and multiple signaling pathways, including BMP, FGF, and Notch in the SHF. Finally, two rare heterozygous mutations of HNRNPA1 were detected in human CHDs. These findings suggest a role of Hnrnpa1 in embryonic heart development in mice and humans.


Assuntos
Cardiopatias Congênitas/genética , Coração/embriologia , Ribonucleoproteína Nuclear Heterogênea A1/genética , Animais , Análise Mutacional de DNA , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Mutação da Fase de Leitura , Técnicas de Inativação de Genes , Cardiopatias Congênitas/patologia , Homozigoto , Humanos , Lactente , Masculino , Camundongos , Camundongos Transgênicos , Miocárdio/patologia , Miócitos Cardíacos , Organogênese/genética , Transdução de Sinais/genética
3.
PLoS Genet ; 7(11): e1002356, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22072985

RESUMO

Cartilage and endochondral bone development require SOX9 activity to regulate chondrogenesis, chondrocyte proliferation, and transition to a non-mitotic hypertrophic state. The restricted and reciprocal expression of the collagen X gene, Col10a1, in hypertrophic chondrocytes and Sox9 in immature chondrocytes epitomise the precise spatiotemporal control of gene expression as chondrocytes progress through phases of differentiation, but how this is achieved is not clear. Here, we have identified a regulatory element upstream of Col10a1 that enhances its expression in hypertrophic chondrocytes in vivo. In immature chondrocytes, where Col10a1 is not expressed, SOX9 interacts with a conserved sequence within this element that is analogous to that within the intronic enhancer of the collagen II gene Col2a1, the known transactivation target of SOX9. By analysing a series of Col10a1 reporter genes in transgenic mice, we show that the SOX9 binding consensus in this element is required to repress expression of the transgene in non-hypertrophic chondrocytes. Forced ectopic Sox9 expression in hypertrophic chondrocytes in vitro and in mice resulted in down-regulation of Col10a1. Mutation of a binding consensus motif for GLI transcription factors, which are the effectors of Indian hedgehog signaling, close to the SOX9 site in the Col10a1 regulatory element, also derepressed transgene expression in non-hypertrophic chondrocytes. GLI2 and GLI3 bound to the Col10a1 regulatory element but not to the enhancer of Col2a1. In addition to Col10a1, paired SOX9-GLI binding motifs are present in the conserved non-coding regions of several genes that are preferentially expressed in hypertrophic chondrocytes and the occurrence of pairing is unlikely to be by chance. We propose a regulatory paradigm whereby direct concomitant positive and negative transcriptional control by SOX9 ensures differentiation phase-specific gene expression in chondrocytes. Discrimination between these opposing modes of transcriptional control by SOX9 may be mediated by cooperation with different partners such as GLI factors.


Assuntos
Desenvolvimento Ósseo/genética , Cartilagem/crescimento & desenvolvimento , Condrogênese/genética , Colágeno Tipo II/genética , Colágeno Tipo X/genética , Lâmina de Crescimento/crescimento & desenvolvimento , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição SOX9/metabolismo , Animais , Sequência de Bases , Diferenciação Celular/genética , Condrócitos/citologia , Condrócitos/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação , Motivos de Nucleotídeos/genética , Regiões Promotoras Genéticas , Transdução de Sinais , Ativação Transcricional , Proteína GLI1 em Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...