Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nat Cell Biol ; 25(11): 1704-1715, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37932452

RESUMO

X-chromosome inactivation (XCI) balances gene expression between the sexes in female mammals. Shortly after fertilization, upregulation of Xist RNA from one X chromosome initiates XCI, leading to chromosome-wide gene silencing. XCI is maintained in all cell types, except the germ line and the pluripotent state where XCI is reversed. The mechanisms triggering Xist upregulation have remained elusive. Here we identify GATA transcription factors as potent activators of Xist. Through a pooled CRISPR activation screen in murine embryonic stem cells, we demonstrate that GATA1, as well as other GATA transcription factors can drive ectopic Xist expression. Moreover, we describe GATA-responsive regulatory elements in the Xist locus bound by different GATA factors. Finally, we show that GATA factors are essential for XCI induction in mouse preimplantation embryos. Deletion of GATA1/4/6 or GATA-responsive Xist enhancers in mouse zygotes effectively prevents Xist upregulation. We propose that the activity or complete absence of various GATA family members controls initial Xist upregulation, XCI maintenance in extra-embryonic lineages and XCI reversal in the epiblast.


Assuntos
Fatores de Transcrição GATA , RNA Longo não Codificante , Animais , Feminino , Camundongos , Fertilização/genética , Fatores de Transcrição GATA/genética , Mamíferos , RNA Longo não Codificante/genética , Regulação para Cima , Cromossomo X , Inativação do Cromossomo X/genética
2.
Mol Syst Biol ; 19(11): e11510, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37735975

RESUMO

For a short period during early development of mammalian embryos, both X chromosomes in females are active, before dosage compensation is ensured through X-chromosome inactivation. In female mouse embryonic stem cells (mESCs), which carry two active X chromosomes, increased X-dosage affects cell signaling and impairs differentiation. The underlying mechanisms, however, remain poorly understood. To dissect X-dosage effects on the signaling network in mESCs, we combine systematic perturbation experiments with mathematical modeling. We quantify the response to a variety of inhibitors and growth factors for cells with one (XO) or two X chromosomes (XX). We then build models of the signaling networks in XX and XO cells through a semi-quantitative modeling approach based on modular response analysis. We identify a novel negative feedback in the PI3K/AKT pathway through GSK3. Moreover, the presence of a single active X makes mESCs more sensitive to the differentiation-promoting Activin A signal and leads to a stronger RAF1-mediated negative feedback in the FGF-triggered MAPK pathway. The differential response to these differentiation-promoting pathways can explain the impaired differentiation propensity of female mESCs.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Embrionárias Murinas , Feminino , Animais , Masculino , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias/metabolismo , Caracteres Sexuais , Quinase 3 da Glicogênio Sintase , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Diferenciação Celular/genética , Mamíferos
3.
Sci Adv ; 9(39): eadg1936, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37774033

RESUMO

Human pluripotent stem cells (hPSCs) are of fundamental relevance in regenerative medicine. Naïve hPSCs hold promise to overcome some of the limitations of conventional (primed) hPSCs, including recurrent epigenetic anomalies. Naïve-to-primed transition (capacitation) follows transcriptional dynamics of human embryonic epiblast and is necessary for somatic differentiation from naïve hPSCs. We found that capacitated hPSCs are transcriptionally closer to postimplantation epiblast than conventional hPSCs. This prompted us to comprehensively study epigenetic and related transcriptional changes during capacitation. Our results show that CpG islands, gene regulatory elements, and retrotransposons are hotspots of epigenetic dynamics during capacitation and indicate possible distinct roles of specific epigenetic modifications in gene expression control between naïve and primed hPSCs. Unexpectedly, PRC2 activity appeared to be dispensable for the capacitation. We find that capacitated hPSCs acquire an epigenetic state similar to conventional hPSCs. Significantly, however, the X chromosome erosion frequently observed in conventional female hPSCs is reversed by resetting and subsequent capacitation.


Assuntos
Células-Tronco Pluripotentes , Humanos , Feminino , Diferenciação Celular/genética , Embrião de Mamíferos , Epigênese Genética
4.
Mol Cell ; 82(1): 190-208.e17, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34932975

RESUMO

Developmental genes such as Xist, which initiates X chromosome inactivation, are controlled by complex cis-regulatory landscapes, which decode multiple signals to establish specific spatiotemporal expression patterns. Xist integrates information on X chromosome dosage and developmental stage to trigger X inactivation in the epiblast specifically in female embryos. Through a pooled CRISPR screen in differentiating mouse embryonic stem cells, we identify functional enhancer elements of Xist at the onset of random X inactivation. Chromatin profiling reveals that X-dosage controls the promoter-proximal region, while differentiation cues activate several distal enhancers. The strongest distal element lies in an enhancer cluster associated with a previously unannotated Xist-enhancing regulatory transcript, which we named Xert. Developmental cues and X-dosage are thus decoded by distinct regulatory regions, which cooperate to ensure female-specific Xist upregulation at the correct developmental time. With this study, we start to disentangle how multiple, functionally distinct regulatory elements interact to generate complex expression patterns in mammals.


Assuntos
Elementos Facilitadores Genéticos , Loci Gênicos , Células-Tronco Embrionárias Murinas/metabolismo , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Inativação do Cromossomo X , Cromossomo X , Animais , Diferenciação Celular , Linhagem Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regulação para Cima
5.
Nat Commun ; 12(1): 3638, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131144

RESUMO

To ensure dosage compensation between the sexes, one randomly chosen X chromosome is silenced in each female cell in the process of X-chromosome inactivation (XCI). XCI is initiated during early development through upregulation of the long non-coding RNA Xist, which mediates chromosome-wide gene silencing. Cell differentiation, Xist upregulation and gene silencing are thought to be coupled at multiple levels to ensure inactivation of exactly one out of two X chromosomes. Here we perform an integrated analysis of all three processes through allele-specific single-cell RNA-sequencing. Specifically, we assess the onset of random XCI in differentiating mouse embryonic stem cells, and develop dedicated analysis approaches. By exploiting the inter-cellular heterogeneity of XCI onset, we identify putative Xist regulators. Moreover, we show that transient Xist upregulation from both X chromosomes results in biallelic gene silencing right before transitioning to the monoallelic state, confirming a prediction of the stochastic model of XCI. Finally, we show that genetic variation modulates the XCI process at multiple levels, providing a potential explanation for the long-known X-controlling element (Xce) effect, which leads to preferential inactivation of a specific X chromosome in inter-strain crosses. We thus draw a detailed picture of the different levels of regulation that govern the initiation of XCI. The experimental and computational strategies we have developed here will allow us to profile random XCI in more physiological contexts, including primary human cells in vivo.


Assuntos
RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação para Cima , Inativação do Cromossomo X , Alelos , Animais , Mecanismo Genético de Compensação de Dose , Feminino , Inativação Gênica , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas , Análise de Sequência de RNA , Cromossomo X , Inativação do Cromossomo X/genética , Inativação do Cromossomo X/fisiologia
6.
Genome Biol ; 22(1): 110, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863351

RESUMO

BACKGROUND: X-chromosomal genes contribute to sex differences, in particular during early development, when both X chromosomes are active in females. Double X-dosage shifts female pluripotent cells towards the naive stem cell state by increasing pluripotency factor expression, inhibiting the differentiation-promoting MAP kinase (MAPK) signaling pathway, and delaying differentiation. RESULTS: To identify the genetic basis of these sex differences, we use a two-step CRISPR screening approach to comprehensively identify X-linked genes that cause the female pluripotency phenotype in murine embryonic stem cells. A primary chromosome-wide CRISPR knockout screen and three secondary screens assaying for different aspects of the female pluripotency phenotype allow us to uncover multiple genes that act in concert and to disentangle their relative roles. Among them, we identify Dusp9 and Klhl13 as two central players. While Dusp9 mainly affects MAPK pathway intermediates, Klhl13 promotes pluripotency factor expression and delays differentiation, with both factors jointly repressing MAPK target gene expression. CONCLUSIONS: Here, we elucidate the mechanisms that drive sex-induced differences in pluripotent cells and our approach serves as a blueprint to discover the genetic basis of the phenotypic consequences of other chromosomal effects.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Células-Tronco Embrionárias/metabolismo , Genes Ligados ao Cromossomo X , Estudos de Associação Genética/métodos , Caracteres Sexuais , Animais , Biomarcadores , Proteínas de Transporte , Diferenciação Celular/genética , Variações do Número de Cópias de DNA , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Mutação , Fosforilação , Ligação Proteica , Fatores Sexuais , Cromossomo X
7.
Science ; 372(6542): 642-646, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33811162

RESUMO

The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput x-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (Mpro), which is essential for viral replication. In contrast to commonly applied x-ray fragment screening experiments with molecules of low complexity, our screen tested already-approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to Mpro In subsequent cell-based viral reduction assays, one peptidomimetic and six nonpeptidic compounds showed antiviral activity at nontoxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2.


Assuntos
Sítio Alostérico , Antivirais/química , Domínio Catalítico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Desenvolvimento de Medicamentos , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Células Vero , Replicação Viral/efeitos dos fármacos
8.
Epigenetics Chromatin ; 13(1): 20, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264931

RESUMO

BACKGROUND: Understanding the transcriptome is critical for explaining the functional as well as regulatory roles of genomic regions. Current methods for the identification of transcription units (TUs) use RNA-seq that, however, require large quantities of mRNA rendering the identification of inherently unstable TUs, e.g. miRNA precursors, difficult. This problem can be alleviated by chromatin-based approaches due to a correlation between histone modifications and transcription. RESULTS: Here, we introduce EPIGENE, a novel chromatin segmentation method for the identification of active TUs using transcription-associated histone modifications. Unlike the existing chromatin segmentation approaches, EPIGENE uses a constrained, semi-supervised multivariate hidden Markov model (HMM) that models the observed combination of histone modifications using a product of independent Bernoulli random variables, to identify active TUs. Our results show that EPIGENE can identify genome-wide TUs in an unbiased manner. EPIGENE-predicted TUs show an enrichment of RNA Polymerase II at the transcription start site and in gene body indicating that they are indeed transcribed. Comprehensive validation using existing annotations revealed that 93% of EPIGENE TUs can be explained by existing gene annotations and 5% of EPIGENE TUs in HepG2 can be explained by microRNA annotations. EPIGENE outperformed the existing RNA-seq-based approaches in TU prediction precision across human cell lines. Finally, we identified 232 novel TUs in K562 and 43 novel cell-specific TUs all of which were supported by RNA Polymerase II ChIP-seq and Nascent RNA-seq data. CONCLUSION: We demonstrate the applicability of EPIGENE to identify genome-wide active TUs and to provide valuable information about unannotated TUs. EPIGENE is an open-source method and is freely available at: https://github.com/imbbLab/EPIGENE.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação/métodos , Código das Histonas , Anotação de Sequência Molecular/métodos , Software , Sítio de Iniciação de Transcrição , Epigenômica/métodos , Células Hep G2 , Humanos , Células K562 , Cadeias de Markov , Transcriptoma
9.
Sci Rep ; 9(1): 19063, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836860

RESUMO

MicroRNAs (miRNAs) play an important role in guiding development and maintaining function of the human heart. Dysregulation of miRNAs has been linked to various congenital heart diseases including Tetralogy of Fallot (TOF), which represents the most common cyanotic heart malformation in humans. Several studies have identified dysregulated miRNAs in right ventricular (RV) tissues of TOF patients. In this study, we profiled genome-wide the whole transcriptome and analyzed the relationship of miRNAs and mRNAs of RV tissues of a homogeneous group of 22 non-syndromic TOF patients. Observed profiles were compared to profiles obtained from right and left ventricular tissue of normal hearts. To reduce the commonly observed large list of predicted target genes of dysregulated miRNAs, we applied a stringent target prediction pipeline integrating probabilities for miRNA-mRNA interaction. The final list of disease-related miRNA-mRNA pairs comprises novel as well as known miRNAs including miR-1 and miR-133, which are essential to cardiac development and function by regulating KCNJ2, FBN2, SLC38A3 and TNNI1. Overall, our study provides additional insights into post-transcriptional gene regulation of malformed hearts of TOF patients.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Tetralogia de Fallot/genética , Cromossomos Humanos Par 6/genética , Feminino , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Masculino , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Miocárdio/metabolismo , Miocárdio/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Genome Res ; 29(7): 1087-1099, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31175153

RESUMO

To initiate X-Chromosome inactivation (XCI), the long noncoding RNA Xist mediates chromosome-wide gene silencing of one X Chromosome in female mammals to equalize gene dosage between the sexes. The efficiency of gene silencing is highly variable across genes, with some genes even escaping XCI in somatic cells. A gene's susceptibility to Xist-mediated silencing appears to be determined by a complex interplay of epigenetic and genomic features; however, the underlying rules remain poorly understood. We have quantified chromosome-wide gene silencing kinetics at the level of the nascent transcriptome using allele-specific Precision nuclear Run-On sequencing (PRO-seq). We have developed a Random Forest machine-learning model that can predict the measured silencing dynamics based on a large set of epigenetic and genomic features and tested its predictive power experimentally. The genomic distance to the Xist locus, followed by gene density and distance to LINE elements, are the prime determinants of the speed of gene silencing. Moreover, we find two distinct gene classes associated with different silencing pathways: a class that requires Xist-repeat A for silencing, which is known to activate the SPEN pathway, and a second class in which genes are premarked by Polycomb complexes and tend to rely on the B repeat in Xist for silencing, known to recruit Polycomb complexes during XCI. Moreover, a series of features associated with active transcriptional elongation and chromatin 3D structure are enriched at rapidly silenced genes. Our machine-learning approach can thus uncover the complex combinatorial rules underlying gene silencing during X inactivation.


Assuntos
Epigênese Genética , Inativação Gênica , Aprendizado de Máquina , RNA Longo não Codificante/fisiologia , Inativação do Cromossomo X/genética , Animais , Linhagem Celular , Células-Tronco Embrionárias , Feminino , Genes Ligados ao Cromossomo X , Genoma , Cinética , Camundongos , Modelos Genéticos
11.
Nat Struct Mol Biol ; 26(5): 350-360, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962582

RESUMO

Gene-regulatory networks control the establishment and maintenance of alternative gene-expression states during development. A particular challenge is the acquisition of opposing states by two copies of the same gene, as in the case of the long non-coding RNA Xist in mammals at the onset of random X-chromosome inactivation (XCI). The regulatory principles that lead to stable mono-allelic expression of Xist remain unknown. Here, we uncover the minimal regulatory network that can ensure female-specific and mono-alleleic upregulation of Xist, by combining mathematical modeling and experimental validation of central model predictions. We identify a symmetric toggle switch as the basis for random mono-allelic upregulation of Xist, which reproduces data from several mutant, aneuploid and polyploid mouse cell lines with various Xist expression patterns. Moreover, this toggle switch explains the diversity of strategies employed by different species at the onset of XCI. In addition to providing a unifying conceptual framework with which to explore XCI across mammals, our study sets the stage for identifying the molecular mechanisms needed to initiate random XCI.


Assuntos
Mamíferos/genética , Inativação do Cromossomo X , Alelos , Animais , Feminino , Redes Reguladoras de Genes , Humanos , Masculino , RNA Longo não Codificante , Especificidade da Espécie , Biologia de Sistemas
12.
Cardiovasc Res ; 112(1): 464-77, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27496870

RESUMO

AIMS: For the majority of congenital heart diseases (CHDs), the full complexity of the causative molecular network, which is driven by genetic, epigenetic, and environmental factors, is yet to be elucidated. Epigenetic alterations are suggested to play a pivotal role in modulating the phenotypic expression of CHDs and their clinical course during life. Candidate approaches implied that DNA methylation might have a developmental role in CHD and contributes to the long-term progress of non-structural cardiac diseases. The aim of the present study is to define the postnatal epigenome of two common cardiac malformations, representing epigenetic memory, and adaption to hemodynamic alterations, which are jointly relevant for the disease course. METHODS AND RESULTS: We present the first analysis of genome-wide DNA methylation data obtained from myocardial biopsies of Tetralogy of Fallot (TOF) and ventricular septal defect patients. We defined stringent sets of differentially methylated regions between patients and controls, which are significantly enriched for genomic features like promoters, exons, and cardiac enhancers. For TOF, we linked DNA methylation with genome-wide expression data and found a significant overlap for hypermethylated promoters and down-regulated genes, and vice versa. We validated and replicated the methylation of selected CpGs and performed functional assays. We identified a hypermethylated novel developmental CpG island in the promoter of SCO2 and demonstrate its functional impact. Moreover, we discovered methylation changes co-localized with novel, differential splicing events among sarcomeric genes as well as transcription factor binding sites. Finally, we demonstrated the interaction of differentially methylated and expressed genes in TOF with mutated CHD genes in a molecular network. CONCLUSION: By interrogating DNA methylation and gene expression data, we identify two novel mechanism contributing to the phenotypic expression of CHDs: aberrant methylation of promoter CpG islands and methylation alterations leading to differential splicing.


Assuntos
Proteínas de Transporte/genética , Metilação de DNA , Epigênese Genética , Perfilação da Expressão Gênica/métodos , Comunicação Interventricular/genética , Proteínas Mitocondriais/genética , Tetralogia de Fallot/genética , Adaptação Fisiológica , Adulto , Estudos de Casos e Controles , Pré-Escolar , Ilhas de CpG , Redes Reguladoras de Genes , Estudos de Associação Genética , Marcadores Genéticos , Predisposição Genética para Doença , Comunicação Interventricular/fisiopatologia , Hemodinâmica , Humanos , Lactente , Pessoa de Meia-Idade , Chaperonas Moleculares , Fenótipo , Análise de Componente Principal , Regiões Promotoras Genéticas , Splicing de RNA , Reprodutibilidade dos Testes , Tetralogia de Fallot/fisiopatologia , Adulto Jovem
13.
Nat Commun ; 7: 12514, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27530917

RESUMO

The combinatorial action of co-localizing chromatin modifications and regulators determines chromatin structure and function. However, identifying co-localizing chromatin features in a high-throughput manner remains a technical challenge. Here we describe a novel reChIP-seq approach and tailored bioinformatic analysis tool, normR that allows for the sequential enrichment and detection of co-localizing DNA-associated proteins in an unbiased and genome-wide manner. We illustrate the utility of the reChIP-seq method and normR by identifying H3K4me3 or H3K27me3 bivalently modified nucleosomes in primary human CD4(+) memory T cells. We unravel widespread bivalency at hypomethylated CpG-islands coinciding with inactive promoters of developmental regulators. reChIP-seq additionally uncovered heterogeneous bivalency in the population, which was undetectable by intersecting H3K4me3 and H3K27me3 ChIP-seq tracks. Finally, we provide evidence that bivalency is established and stabilized by an interplay between the genome and epigenome. Our reChIP-seq approach augments conventional ChIP-seq and is broadly applicable to unravel combinatorial modes of action.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Imunoprecipitação da Cromatina/métodos , Histonas/metabolismo , Lisina/metabolismo , Sequência de Bases , Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética , Genoma Humano , Humanos , Metilação , Modelos Genéticos , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Sítio de Iniciação de Transcrição
14.
Elife ; 52016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27223324

RESUMO

PHF13 is a chromatin affiliated protein with a functional role in differentiation, cell division, DNA damage response and higher chromatin order. To gain insight into PHF13's ability to modulate these processes, we elucidate the mechanisms targeting PHF13 to chromatin, its genome wide localization and its molecular chromatin context. Size exclusion chromatography, mass spectrometry, X-ray crystallography and ChIP sequencing demonstrate that PHF13 binds chromatin in a multivalent fashion via direct interactions with H3K4me2/3 and DNA, and indirectly via interactions with PRC2 and RNA PolII. Furthermore, PHF13 depletion disrupted the interactions between PRC2, RNA PolII S5P, H3K4me3 and H3K27me3 and resulted in the up and down regulation of genes functionally enriched in transcriptional regulation, DNA binding, cell cycle, differentiation and chromatin organization. Together our findings argue that PHF13 is an H3K4me2/3 molecular reader and transcriptional co-regulator, affording it the ability to impact different chromatin processes.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Histonas/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Cromatografia em Gel , Cristalografia por Raios X , Regulação da Expressão Gênica , Humanos , Espectrometria de Massas , Camundongos , Ligação Proteica
15.
Nucleic Acids Res ; 44(6): 2538-53, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26582913

RESUMO

DPF3 (BAF45c) is a member of the BAF chromatin remodeling complex. Two isoforms have been described, namely DPF3a and DPF3b. The latter binds to acetylated and methylated lysine residues of histones. Here, we elaborate on the role of DPF3a and describe a novel pathway of cardiac gene transcription leading to pathological cardiac hypertrophy. Upon hypertrophic stimuli, casein kinase 2 phosphorylates DPF3a at serine 348. This initiates the interaction of DPF3a with the transcriptional repressors HEY, followed by the release of HEY from the DNA. Moreover, BRG1 is bound by DPF3a, and is thus recruited to HEY genomic targets upon interaction of the two components. Consequently, the transcription of downstream targets such as NPPA and GATA4 is initiated and pathological cardiac hypertrophy is established. In human, DPF3a is significantly up-regulated in hypertrophic hearts of patients with hypertrophic cardiomyopathy or aortic stenosis. Taken together, we show that activation of DPF3a upon hypertrophic stimuli switches cardiac fetal gene expression from being silenced by HEY to being activated by BRG1. Thus, we present a novel pathway for pathological cardiac hypertrophy, whose inhibition is a long-term therapeutic goal for the treatment of the course of heart failure.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cardiomegalia/genética , Montagem e Desmontagem da Cromatina , Cromatina/química , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Diferenciação Celular , Cromatina/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Mioblastos/citologia , Mioblastos/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Nucleares/metabolismo , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcrição Gênica
16.
Hum Mol Genet ; 23(12): 3115-28, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24459294

RESUMO

Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease. Its genetic basis is demonstrated by an increased recurrence risk in siblings and familial cases. However, the majority of TOF are sporadic, isolated cases of undefined origin and it had been postulated that rare and private autosomal variations in concert define its genetic basis. To elucidate this hypothesis, we performed a multilevel study using targeted re-sequencing and whole-transcriptome profiling. We developed a novel concept based on a gene's mutation frequency to unravel the polygenic origin of TOF. We show that isolated TOF is caused by a combination of deleterious private and rare mutations in genes essential for apoptosis and cell growth, the assembly of the sarcomere as well as for the neural crest and secondary heart field, the cellular basis of the right ventricle and its outflow tract. Affected genes coincide in an interaction network with significant disturbances in expression shared by cases with a mutually affected TOF gene. The majority of genes show continuous expression during adulthood, which opens a new route to understand the diversity in the long-term clinical outcome of TOF cases. Our findings demonstrate that TOF has a polygenic origin and that understanding the genetic basis can lead to novel diagnostic and therapeutic routes. Moreover, the novel concept of the gene mutation frequency is a versatile measure and can be applied to other open genetic disorders.


Assuntos
Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Miocárdio/patologia , Tetralogia de Fallot/genética , Tetralogia de Fallot/patologia , Apoptose , Sequência de Bases , Proliferação de Células , Estudos de Coortes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Frequência do Gene , Humanos , Dados de Sequência Molecular , Herança Multifatorial , Mutação , Miocárdio/metabolismo , Análise de Sequência de DNA , Tetralogia de Fallot/sangue
17.
PLoS Genet ; 7(2): e1001313, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21379568

RESUMO

The transcriptome, as the pool of all transcribed elements in a given cell, is regulated by the interaction between different molecular levels, involving epigenetic, transcriptional, and post-transcriptional mechanisms. However, many previous studies investigated each of these levels individually, and little is known about their interdependency. We present a systems biology study integrating mRNA profiles with DNA-binding events of key cardiac transcription factors (Gata4, Mef2a, Nkx2.5, and Srf), activating histone modifications (H3ac, H4ac, H3K4me2, and H3K4me3), and microRNA profiles obtained in wild-type and RNAi-mediated knockdown. Finally, we confirmed conclusions primarily obtained in cardiomyocyte cell culture in a time-course of cardiac maturation in mouse around birth. We provide insights into the combinatorial regulation by cardiac transcription factors and show that they can partially compensate each other's function. Genes regulated by multiple transcription factors are less likely differentially expressed in RNAi knockdown of one respective factor. In addition to the analysis of the individual transcription factors, we found that histone 3 acetylation correlates with Srf- and Gata4-dependent gene expression and is complementarily reduced in cardiac Srf knockdown. Further, we found that altered microRNA expression in Srf knockdown potentially explains up to 45% of indirect mRNA targets. Considering all three levels of regulation, we present an Srf-centered transcription network providing on a single-gene level insights into the regulatory circuits establishing respective mRNA profiles. In summary, we show the combinatorial contribution of four DNA-binding transcription factors in regulating the cardiac transcriptome and provide evidence that histone modifications and microRNAs modulate their functional consequence. This opens a new perspective to understand heart development and the complexity cardiovascular disorders.


Assuntos
Redes Reguladoras de Genes , Histonas/metabolismo , MicroRNAs/metabolismo , Miocárdio/metabolismo , Processamento de Proteína Pós-Traducional/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Acetilação , Animais , Sítios de Ligação , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/metabolismo , Humanos , Fatores de Transcrição MEF2 , Camundongos , Fatores de Regulação Miogênica/metabolismo , Ligação Proteica , Reprodutibilidade dos Testes , Fator de Resposta Sérica/metabolismo
18.
Methods ; 50(4): S19-22, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20215016

RESUMO

Quantitative real-time PCR (qPCR) is a frequently used, sensitive and accurate method to study gene expression profiles. However, its throughput was so far limited for routine laboratories to 384 reactions per run based on the limitations of the available instruments. Recently, the LightCycler 1536 Instrument was launched providing a high-throughput solution for qPCR with the analysis of 1536 reactions in approximately 45 min. We assessed the accuracy and sensitivity of this novel technology for the analysis of gene expression profiles in combination with the Innovadyne Nanodrop Express pipetting robot. We compared expression profiles obtained for 42 genes in 71 samples between the Universal ProbeLibrary and the LightCycler 1536 Instrument and SYBR Green I and the ABI PRISM 7900HT system. We found that the results were highly reproducible between both systems. Beside the higher throughput, the advantage of the LightCycler 1536 Instrument was the reduced consumption of reagents and sample material.


Assuntos
Perfilação da Expressão Gênica/instrumentação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/instrumentação , Perfilação da Expressão Gênica/métodos , Cardiopatias Congênitas/metabolismo , Humanos , Hidrólise , Miocárdio/química , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sensibilidade e Especificidade
19.
PLoS One ; 5(12): e15754, 2010 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-21206756

RESUMO

Eukaryotic genomes are packed into chromatin, whose basic repeating unit is the nucleosome. Nucleosome positioning is a widely researched area. A common experimental procedure to determine nucleosome positions involves the use of micrococcal nuclease (MNase). Here, we show that the cutting preference of MNase in combination with size selection generates a sequence-dependent bias in the resulting fragments. This strongly affects nucleosome positioning data and especially sequence-dependent models for nucleosome positioning. As a consequence we see a need to re-evaluate whether the DNA sequence is a major determinant of nucleosome positioning in vivo. More generally, our results show that data generated after MNase digestion of chromatin requires a matched control experiment in order to determine nucleosome positions.


Assuntos
Nuclease do Micrococo/metabolismo , Nucleossomos/química , Saccharomyces cerevisiae/genética , Algoritmos , Cromatina/química , Códon , Biologia Computacional/métodos , DNA/química , DNA Fúngico/genética , Bases de Dados de Proteínas , Dimerização , Genoma Fúngico , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Reconhecimento Automatizado de Padrão/métodos , Ribonuclease Pancreático/química , Análise de Sequência de DNA
20.
Genes Dev ; 22(17): 2370-84, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18765789

RESUMO

Chromatin remodeling and histone modifications facilitate access of transcription factors to DNA by promoting the unwinding and destabilization of histone-DNA interactions. We present DPF3, a new epigenetic key factor for heart and muscle development characterized by a double PHD finger. DPF3 is associated with the BAF chromatin remodeling complex and binds methylated and acetylated lysine residues of histone 3 and 4. Thus, DPF3 may represent the first plant homeodomains that bind acetylated lysines, a feature previously only shown for the bromodomain. During development Dpf3 is expressed in the heart and somites of mouse, chicken, and zebrafish. Morpholino knockdown of dpf3 in zebrafish leads to incomplete cardiac looping and severely reduced ventricular contractility, with disassembled muscular fibers caused by transcriptional deregulation of structural and regulatory proteins. Promoter analysis identified Dpf3 as a novel downstream target of Mef2a. Taken together, DPF3 adds a further layer of complexity to the BAF complex by representing a tissue-specific anchor between histone acetylations as well as methylations and chromatin remodeling. Furthermore, this shows that plant homeodomain proteins play a yet unexplored role in recruiting chromatin remodeling complexes to acetylated histones.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Coração/embriologia , Desenvolvimento Muscular/fisiologia , Fatores de Transcrição/biossíntese , Acetilação , Sequência de Aminoácidos , Animais , Embrião de Galinha , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Epigênese Genética , Histonas/metabolismo , Humanos , Metilação , Camundongos , Dados de Sequência Molecular , Miocárdio/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...