Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 379(2193): 20190423, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33517873

RESUMO

Feldspar-rich pseudotachylytes from the island of Moskenesøya, Lofoten, formed in dry granulites under lower crustal conditions during the Caledonian orogeny. The central parts of the pseudotachylytes, where the cooling rates were slowest, are characterized by microlites and spherulites of plagioclase and K-feldspar. K-feldspar surrounding plagioclase is consistent with crystallization from a melt during cooling instead of devitrification as the origin of the spherulites. Very thin (a few micrometres wide) injection veins, which experienced very rapid quenching, contain amorphous or cryptocrystalline material. The preservation of this material and of the fine-grained microstructures shows that, under fluid-absent conditions, recrystallization and reactions are slow and the original microstructures of the pseudotachylytes can be preserved. This article is part of a discussion meeting issue 'Understanding earthquakes using the geological record'.

2.
Sci Adv ; 3(2): e1602067, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28261660

RESUMO

Fractures and faults riddle the Earth's crust on all scales, and the deformation associated with them is presumed to have had significant effects on its petrological and structural evolution. However, despite the abundance of directly observable earthquake activity, unequivocal evidence for seismic slip rates along ancient faults is rare and usually related to frictional melting and the formation of pseudotachylites. We report novel microstructures from garnet crystals in the immediate vicinity of seismic slip planes that transected lower crustal granulites during intermediate-depth earthquakes in the Bergen Arcs area, western Norway, some 420 million years ago. Seismic loading caused massive dislocation formations and fragmentation of wall rock garnets. Microfracturing and the injection of sulfide melts occurred during an early stage of loading. Subsequent dilation caused pervasive transport of fluids into the garnets along a network of microfractures, dislocations, and subgrain and grain boundaries, leading to the growth of abundant mineral inclusions inside the fragmented garnets. Recrystallization by grain boundary migration closed most of the pores and fractures generated by the seismic event. This wall rock alteration represents the initial stages of an earthquake-triggered metamorphic transformation process that ultimately led to reworking of the lower crust on a regional scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...