Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hum Evol ; 183: 103425, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37734122

RESUMO

In the middle Eocene, multiple lineages of North American omomyoids independently evolved body masses greater than 500 g. Most of these large-bodied omomyoids are known from small sample sizes, which has contributed to a lack of consensus regarding their alpha taxonomy. Here, we describe new Uintan omomyine specimens from the Uinta Basin of Utah and the Tornillo Basin of Texas. These new samples expand the hypodigms of Diablomomys dalquesti, Mytonius hopsoni, and Ourayia uintensis, and favor the recognition of new species of Mytonius and Ourayia based on specimens from the Tornillo Basin. These samples support the recognition of Diablomomys as a valid genus distinct from Omomys, Ourayia as a valid genus distinct from Macrotarsius, and Mytonius as a valid genus distinct from Ourayia. Although Diablomomys and Omomys co-occur in the late Uintan of the Tornillo Basin, Ourayia and Mytonius are time-successive taxa with a wide distribution across multiple Laramide basins. The data presented here reinforce the conclusion that the Uintan was a time period in which omomyines diversified to include a large number of taxa with body masses above Kay's threshold and frugivorous-folivorous diets. These data also provide evidence that North American primate faunas exhibited a shifting pattern of regional endemism during the middle Eocene. By the early Uintan, primate faunas from Southern California were already quite distinct from primate faunas of the central Rocky Mountains or Trans-Pecos Texas. By the late Uintan, primate faunas in all three regions demonstrated greater provincialism, with Trans-Pecos Texas and Southern California both exhibiting a large number of endemic primate taxa and sharing only a single primate genus (Macrotarsius) in common. This increase in primate endemism across the Uintan may be tied to changes in paleohabitats associated with the larger trend toward decreasing temperatures from the Early Eocene Climatic Optimum to the Eocene/Oligocene transition.

2.
Clin Neurol Neurosurg ; 222: 107413, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36049402

RESUMO

BACKGROUND: Spontaneous resolution of syringomyelia has rarely been reported in the literature. Rarer still are cases wherein this process is associated with pregnancy and parturition. We review theories on syringomyelia development and spontaneous resolution to better understand the role pregnancy and parturition may play in both processes. METHODS: We present a 30-year-old female with MRI-confirmed spontaneous syrinx regression following caesarean delivery of a full-term pregnancy. We additionally review the literature to identify previously reported cases of spontaneous syrinx regression both independent of and associated with pregnancy. RESULTS: Including the present case, 39 cases describing spontaneous regression of syringomyelia have been reported in the literature, of which only four are associated with pregnancy and parturition. 75% of all reported cases were associated with type I Chiari malformation, though several disorders of the craniocervical junction and spinal canal were implicated. Complete syrinx regression was achieved in 33.3% of cases and 5% of cases described recurrence of syringomyelia following the spontaneous resolution. CONCLUSION: Syringomyelia likely develops due to disturbance of the physiologic flow of cerebrospinal fluid around the craniocervical junction and the obex. Several mechanisms including fissuring of the spinal cord parenchyma and reduction of subarachnoid scarring are likely involved in this process. In the setting of pregnancy, additional mechanisms surrounding the increased intraabdominal forces imparted by a growing fetus, Valsalva-like strain experienced during labor, and hemodynamic changes that occur to accommodate gestation are likely implicated. Nevertheless, patients should continue to be monitored periodically for syrinx recurrence.


Assuntos
Malformação de Arnold-Chiari , Siringomielia , Gravidez , Feminino , Humanos , Adulto , Siringomielia/complicações , Siringomielia/diagnóstico por imagem , Malformação de Arnold-Chiari/complicações , Malformação de Arnold-Chiari/diagnóstico por imagem , Espaço Subaracnóideo , Imageamento por Ressonância Magnética , Parto
3.
J Anat ; 241(1): 119-144, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35107175

RESUMO

Dissection reports of large cats (family Felidae) have been published since the late 19th century. These reports generally describe the findings in words, show drawings of the dissection, and usually include some masses of muscles, but often neglect to provide muscle maps showing the precise location of bony origins and insertions. Although these early reports can be highly useful, the absence of visual depictions of muscle attachment sites makes it difficult to compare muscle origins and insertions in living taxa and especially to reconstruct muscle attachments in fossil taxa. Recently, more muscle maps have been published in the primary literature, but those for large cats are still limited. Here, we describe the muscular anatomy of the forelimb of the tiger (Panthera tigris), and compare muscle origins, insertions, and relative muscle masses to other felids to identify differences that may reflect functional adaptations. Our results reiterate the conservative nature of felid anatomy across body sizes and behavioral categories. We find that pantherines have relatively smaller shoulder muscle masses, and relatively larger muscles of the caudal brachium, pronators, and supinators than felines. The muscular anatomy of the tiger shows several modifications that may reflect an adaptation to terrestrial locomotion and a preference for large prey. These include in general a relatively large m. supraspinatus (shoulder flexion), an expanded origin for m. triceps brachii caput longum, and relatively large m. triceps brachii caput laterale (elbow extension), as well as relatively large mm. brachioradialis, abductor digiti I longus, and abductor digiti V. Muscle groups that are well developed in scansorial taxa are not well developed in the tiger, including muscles of the cranial compartment of the brachium and antebrachium, and m. anconeus. Overall, the musculature of the tiger strongly resembles that of the lion (Panthera leo), another large-bodied terrestrial large-prey specialist.


Assuntos
Felidae , Tigres , Animais , Gatos , Felidae/anatomia & histologia , Membro Anterior/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Extremidade Superior
4.
Anat Rec (Hoboken) ; 304(7): 1529-1540, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33099873

RESUMO

Artiodactyl postcrania are commonly used as paleoecological indicators but these studies are usually limited to artiodactyls within a single family. Here, we use 3D geometric morphometrics to analyze the morphology of calcanei from five artiodactyl families (Antilocapridae, Bovidae, Cervidae, Giraffidae, and Tragulidae) and identify common ecological trends among these families using principal component analysis. Our results indicate that antilocaprid and some bovid calcanei show convergent evolution of cursorial morphology and that other bovids have independently evolved less cursorial morphology that is more similar to cervids. This study shows that parallel ecomorphological trends can be identified in multiple families of artiodactyls, as well as within artiodactyl groups. This further suggests that the calcaneus may be a good indicator of ecology and function in fossil groups that are taxonomically ambiguous or not closely related to living taxa.


Assuntos
Artiodáctilos/anatomia & histologia , Evolução Biológica , Calcâneo/anatomia & histologia , Filogenia , Animais , Modelos Anatômicos
5.
Sci Rep ; 9(1): 12341, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451739

RESUMO

Adaptive scenarios of crown primate origins remain contentious due to uncertain order of acquisition and functional significance of the clade's diagnostic traits. A feature of the talus bone in the ankle, known as the posterior trochlear shelf (PTS), is well-regarded as a derived crown primate trait, but its adaptive significance has been obscured by poorly understood function. Here we propose a novel biomechanical function for the PTS and model the talus as a cam mechanism. By surveying a large sample of primates and their closest relatives, we demonstrate that the PTS is most strongly developed in extant taxa that habitually grasp vertical supports with strongly dorsiflexed feet. Tali of the earliest fossils likely to represent crown primates exhibit more strongly developed PTS cam mechanisms than extant primates. As a cam, the PTS may increase grasping efficiency in dorsiflexed foot postures by increasing the path length of the flexor fibularis tendon, and thus improve the muscle's ability to maintain flexed digits without increasing energetic demands. Comparisons are made to other passive digital flexion mechanisms suggested to exist in other vertebrates. These results provide robust anatomical evidence that the habitual vertical support use exerted a strong selective pressure during crown primate origins.


Assuntos
Evolução Biológica , Primatas/anatomia & histologia , Tálus/anatomia & histologia , Análise de Variância , Animais , Filogenia
6.
J Morphol ; 280(8): 1197-1206, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31188504

RESUMO

The relationship of carpal morphology to ecology and habitat is under studied in carnivorans and more generally in mammals. Here, we use 3D-scanning techniques to assess the usefulness of a carpal bone, the scapholunar, in carnivorans to reflect ecology and habitat, and to reconstruct the ecology of five extinct carnivorans from two fossil sites: Rancho La Brea and Natural Trap Cave. We 3D-scanned scapholunars and measured articular surface areas and angles between articular facets using GeoMagic and Rhino 3D-software. We analyzed the difference in these metrics using multivariate analysis of variance and discriminant function analysis. Results show that the scapholunar reflects ecological signal, with clear groupings of cursorial carnivorans and grappling/climbing carnivorans; however, phylogenetic signal was also present in the results with hyaenids, canids, and large felids in distinct morphospaces. Extinct species Miracinonyx trumani (American cheetah) and Smilodon fatalis (sabertooth cat) showed surprising results with M. trumani grouping with pantherines instead of Acinonyx or Puma, suggesting it runs but still retains the ability to grapple prey. S. fatalis groups with pantherines, but also shows some unique adaptations, suggesting it had a different range of wrist motion than living cats. Overall, the scapholunar is a good indicator of ecology and functional morphology and can be another tool to use in modern and fossil carnivorans to reconstruct extinct ecologies and locomotor behaviors.


Assuntos
Carnívoros/fisiologia , Carpo Animal/anatomia & histologia , Extinção Biológica , Atividade Motora/fisiologia , Análise de Variância , Animais , Gatos , Análise Discriminante , Fósseis , Imageamento Tridimensional , Análise Multivariada , Filogenia
7.
J Hum Evol ; 122: 93-107, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29886006

RESUMO

Several new fossil specimens from the Cambay Shale Formation at Tadkeshwar Lignite Mine in Gujarat document the presence of two previously unknown early Eocene primate species from India. A new species of Asiadapis is named based on a jaw fragment preserving premolars similar in morphology to those of A. cambayensis but substantially larger. Also described is an exceptionally preserved edentulous dentary (designated cf. Asiadapis, unnamed sp. nov.) that is slightly larger and much more robust than previously known Cambay Shale primates. Its anatomy most closely resembles that of Eocene adapoids, and the dental formula is the same as in A. cambayensis. A femur and calcaneus are tentatively allocated to the same taxon. Although the dentition is unknown, exquisite preservation of the dentary of cf. Asiadapis sp. nov. enables an assessment of masticatory musculature, function, and gape adaptations, as well as comparison with an equally well-preserved dentary of the asiadapid Marcgodinotius indicus, also from Tadkeshwar. The new M. indicus specimen shows significant gape adaptations but was probably capable of only weak bite force, whereas cf. Asiadapis sp. nov. probably used relatively smaller gapes but could generate relatively greater bite forces.


Assuntos
Fósseis/anatomia & histologia , Primatas/classificação , Animais , Biodiversidade , Índia , Primatas/anatomia & histologia
8.
J Hum Evol ; 99: 25-51, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27650579

RESUMO

The oldest primates of modern aspect (euprimates) appear abruptly on the Holarctic continents during a brief episode of global warming known as the Paleocene-Eocene Thermal Maximum, at the beginning of the Eocene (∼56 Ma). When they first appear in the fossil record, they are already divided into two distinct clades, Adapoidea (basal members of Strepsirrhini, which includes extant lemurs, lorises, and bushbabies) and Omomyidae (basal Haplorhini, which comprises living tarsiers, monkeys, and apes). Both groups have recently been discovered in the early Eocene Cambay Shale Formation of Vastan lignite mine, Gujarat, India, where they are known mainly from teeth and jaws. The Vastan fossils are dated at ∼54.5 Myr based on associated dinoflagellates and isotope stratigraphy. Here, we describe new, exquisitely preserved limb bones of these Indian primates that reveal more primitive postcranial characteristics than have been previously documented for either clade, and differences between them are so minor that in many cases we cannot be certain to which group they belong. Nevertheless, the small distinctions observed in some elements foreshadow postcranial traits that distinguish the groups by the middle Eocene, suggesting that the Vastan primates-though slightly younger than the oldest known euprimates-may represent the most primitive known remnants of the divergence between the two great primate clades.


Assuntos
Fósseis , Haplorrinos/anatomia & histologia , Strepsirhini/anatomia & histologia , Animais , Osso e Ossos/anatomia & histologia , Extremidades/anatomia & histologia , Especiação Genética , Haplorrinos/classificação , Índia , Strepsirhini/classificação
9.
Am J Phys Anthropol ; 157(1): 134-77, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25682740

RESUMO

OBJECTIVES: Comprehensive quantification of the shape and proportions of the medial tibial facet (MTF) of the talus (=astragalus) has been lacking for Primates and their closest relatives. In this study, aspects of MTF form were quantified and employed to test hypotheses about their functional and phylogenetic significance. The following hypotheses influence perceptions of primate evolutionary history but are due for more rigorous assessment: 1) A relatively large MTF distinguishes "prosimians" (strepsirrhines and tarsiers) from anthropoids and non-primate euarchontans; 2) the distinctive form of the "prosimian" MTF is a correlate of locomotor tendencies that emphasize use of vertical and small diameter supports in conjunction with inverted, abducted foot postures; and 3) the "prosimian" MTF form arose along the primate stem lineage and was present in the euprimate common ancestor. METHODS: Three-dimensional (3D) scanning was used to create scale digital models of tali (n = 378 specimens, 122 species) from which three types of variables capturing aspects of MTF form were computed: 1) MTF area relative to body mass and ectal facet area; 2) MTF shape (elliptical vs. non-elliptical); and 3) MTF dorsal restriction on the talar body (i.e., extensive vs. minimal exposure of non-articular area). Data were analyzed using both phylogenetic and traditional comparative methods including Phylogenetic Generalized Least Squares, Ordinary Least Squares, ANCOVA, ANOVA, and Bayesian Ancestral State Reconstruction (ASR). RESULTS: Extant "prosimians" are generally distinct from anthropoids and non-primate euarchontans in our quantitative representations of MTF form. MTF area (but not shape or dorsal restriction) correlates with fibular facet angle (FFa) of the talus, which has also been argued to reflect habitual pedal inversion. Among strepsirrhines, taxa that engage in grasp-leaping more frequently/effectively appear to have a relatively larger MTF than less acrobatic taxa. Directional models of evolutionary change better describe the phylogenetic distribution of MTF variation than do other models. ASR shows 1) little change in the MTF along the primate stem, 2) independent evolution of relatively large and dorsoplantarly deep MTFs in basal haplorhines and strepsirrhines, and 3) re-evolution of morphologies similar to non-euprimates in anthropoids. CONCLUSIONS: Results support the hypothesis that differences in MTF form between anthropoids and "prosimians" reflect greater use of inverted foot postures and grasp-leaping in the latter group. Although fossil "prosimians" do not have the extreme MTF dimensions that characterize many extant acrobatic leapers, these variables by themselves provide little additional behavioral resolution at the level of individual fossils due to strong phylogenetic signal. ASR suggests that some specialization for use of inverted foot postures (as required in a fine-branch niche) and modifications for grasp-leaping evolved independently in basal strepsirrhine and haplorhine lineages.


Assuntos
Evolução Biológica , Postura/fisiologia , Primatas , Tálus/anatomia & histologia , Análise de Variância , Animais , Antropologia Física , Filogenia , Primatas/anatomia & histologia , Primatas/classificação , Primatas/fisiologia
10.
Am J Phys Anthropol ; 153(4): 526-41, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24374860

RESUMO

Gorillas occupy a variety of habitats from the west coast to eastern central Africa. These habitats differ considerably in altitude, which has a pronounced effect on forest ecology. Although all gorillas are obligate terrestrial knuckle-walking quadrupeds, those that live in lowland habitats eat fruits and climb more often than do those living in highland habitats. Here we test the hypothesis that gorilla talus morphology falls along a morphocline that tracks locomotor function related to a more inverted or everted foot set. This proposed morphocline predicts that gorillas living in lowland habitats may have a talocrural joint configured to facilitate a more medially oriented foot during climbing, suggesting that they may be more adaptively committed to arboreality than gorillas living in highland habitats. To quantify the relative set of the foot in gorillas, we chose two three-dimensional measurements of the talocrural joint: mediolateral curvature of the trochlea and relative surface area of the lateral malleolus. Our results show that, in comparison to their eastern counterparts, western gorillas have talar features that reflect a more medially directed sole of the foot. This morphology likely facilitates foot placement in a wider range of positions and minimization of shearing stresses across the joint when the foot is loaded on more curved or vertically oriented substrates as occurs during climbing and other arboreal behaviors. In contrast, eastern gorilla talar morphology is consistent with habitual placement of the foot with the sole directed more inferiorly, suggesting more effective loading during plantigrade push-off on terrestrial substrates.


Assuntos
Gorilla gorilla/anatomia & histologia , Gorilla gorilla/classificação , Tálus/anatomia & histologia , Análise de Variância , Animais , Calcâneo/anatomia & histologia , Calcâneo/fisiologia , Ecossistema , Feminino , Gorilla gorilla/fisiologia , Masculino , Tálus/fisiologia
11.
Am J Phys Anthropol ; 146(2): 281-305, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21842495

RESUMO

More than 25 new specimens of Teilhardina brandti, one of the oldest known euprimates, are reported from earliest Eocene strata of the southern Bighorn Basin, Wyoming. The new fossils include the first upper dentitions, a dentary showing the lower dental formula for the first time, and the first postcrania ascribed to T. brandti (tarsals and terminal phalanges). The elongated navicular and long talar neck suggest that T. brandti was an active arboreal quadruped, and the terminal phalanges constitute the oldest evidence for nails in Euprimates. Phylogenetic analysis incorporating the new data indicates that T. brandti is more derived than T. belgica but less so than T. americana. The hypothesis that Teilhardina originated in Asia (T. asiatica) and dispersed westward to Europe (T. belgica) and then to North America (T. brandti and T. magnoliana) during the earliest Eocene Paleocene-Eocene Thermal Maximum is most consistent with available evidence, including the relative age of fossil samples and their stage of evolution.


Assuntos
Fósseis , Haplorrinos/anatomia & histologia , Animais , Comportamento Animal/fisiologia , Biologia Computacional , Falanges dos Dedos da Mão/anatomia & histologia , Haplorrinos/classificação , Haplorrinos/genética , Mandíbula/anatomia & histologia , Maxila/anatomia & histologia , Unhas/anatomia & histologia , Filogenia , Ossos do Tarso/anatomia & histologia , Dente/anatomia & histologia , Wyoming
12.
J Hum Evol ; 58(5): 406-17, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20381124

RESUMO

Most omomyids are relatively small bodied (e.g. <500g), but beginning in the middle Eocene, some omomyids began to grow larger. The largest omomyids occur in the late middle Eocene during the Uintan NALMA, reaching an estimated body mass over 1kg. The hind limb skeleton of small omomyids is relatively well known, and is generally thought to show active arboreal quadrupedal and leaping adaptations. New postcranial specimens of previously unknown elements from the larger Uintan omomyids, Ourayia (two species), Chipetaia lamporea, and Mytonius hopsoni have recently been recovered from the Uinta Formation, Utah, and from the Mission Valley Formation, California, and they provide additional information concerning their locomotor behavior. The new specimens include several distal tibiae, partial calcanei, a complete talus and a proximal first metatarsal of Chipetaia; distal femora, distal tibiae, cuboids, and partial calcanei of Ourayia uintensis; a complete calcaneus of Ourayia sp.; and a partial calcaneus and talus of Mytonius. Metric analysis of these elements, together with qualitative observations of non-metric traits, indicate that Ourayia and Chipetaia show equal or greater development of traits associated with leaping behavior (including elongation of the calcaneus, navicular and cuboid) than do smaller omomyids from North America. The elements of Mytonius, although fragmentary, lack some leaping features that are well-developed in Ourayia and Chipetaia, suggesting that Mytonius may have relied more on arboreal quadrupedal locomotion than on leaping.


Assuntos
Osso e Ossos/anatomia & histologia , Fósseis , Membro Posterior/anatomia & histologia , Locomoção/fisiologia , Primatas/anatomia & histologia , Animais , Membro Posterior/fisiologia , Análise de Regressão , Utah
13.
J Hum Evol ; 57(2): 123-30, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19625072

RESUMO

In this paper, we describe a new species of Hemiacodon known only from University of Colorado Museum Loc. 92189 (Donna's Locality) in the Turtle Bluff Member of the Bridger Formation, Green River Basin, southwestern Wyoming. Donna's locality has yielded a diverse mostly small-bodied mammalian assemblage of Bridgerian and first appearance Uintan mammalian taxa, as well as range-through taxa. Together with H. engardae sp. nov., the faunal assemblage from Donna's Locality and more recently discovered localities in the same stratigraphic interval provides the first conclusive paleontological evidence of an earliest Uintan age (Ui1A biochron) for the Turtle Bluff Member of the Bridger Formation. The new species is represented by a sample of 11 specimens consisting of well-preserved upper and lower premolars and lower molars. H. engardae is distinct from H. gracilis on the basis of overall larger size as well as a combination of features of the premolars and molars related to a greater development of shearing crests. This suggests that H. engardae may have incorporated more foliage into its diet than the Bridgerian species, H. gracilis.


Assuntos
Fósseis , Dente Molar/anatomia & histologia , Primatas/anatomia & histologia , Animais , Paleontologia , Wyoming
14.
Am J Phys Anthropol ; 131(3): 303-10, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16617428

RESUMO

North American omomyids represent a tremendous Eocene radiation of primates exhibiting a wide range of body sizes and dietary patterns. Despite this adaptive diversity, relatively little is known of the postcranial specializations of the group. Here we describe hindlimb and foot bones of Ourayia uintensis and Chipetaia lamporea that were recovered from the Uinta B member (early Uintan Land Mammal Age), Uinta Formation, Utah. These specimens provide insights into the evolution of postcranial adaptations across different body sizes and dietary guilds within the Eocene primate radiation. Body mass estimates based on talar measurements indicate that Ourayia uintensis and Chipetaia lamporea weighed about 1,500-2,000 g and 500-700 g, respectively. Skeletal elements recovered for Ourayia include the talus, navicular, entocuneiform, first metatarsal, and proximal tibia; bones of Chipetaia include the talus, navicular, entocuneiform, and proximal femur. Both genera had opposable grasping big toes, as indicated by the saddle-shaped joint between the entocuneiform and first metatarsal. Both taxa were arboreal leapers, as indicated by a consistent assemblage of characters in all represented bones, most notably the somewhat elongated naviculars, the high and distinct trochlear crests of the talus, the posteriorly oriented tibial plateau (Ourayia), and the cylindrical head of the femur (Chipetaia). The closest resemblances to Ourayia and Chipetaia are found among the Bridger omomyines, Omomys and Hemiacodon. The results of our comparisons suggest that the later, larger, more herbivorous omomyines from Utah retained a skeletal structure characteristic of earlier, smaller North American omomyids.


Assuntos
Osso e Ossos/anatomia & histologia , Fósseis , Primatas/anatomia & histologia , Adaptação Fisiológica , Animais , Pé/anatomia & histologia , Antropologia Forense , Membro Posterior/anatomia & histologia , Ossos do Metatarso/anatomia & histologia , Ossos do Tarso/anatomia & histologia , Tarso Animal/anatomia & histologia , Tíbia/anatomia & histologia , Utah
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...