Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (203)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38251777

RESUMO

Patient-derived organoid (PDO) models of cancer are a multifunctional research system that better recapitulates human disease as compared to cancer cell lines. PDO models can be generated by culturing patient tumor cells in extracellular basement membrane extracts (BME) and plating them as three-dimensional domes. However, commercially available reagents that have been optimized for phenotypic assays in monolayer cultures often are not compatible with BME. Herein, we describe a method to plate PDO models and assess drug effects using an automated live-cell imaging system. In addition, we apply fluorescent dyes that are compatible with kinetic measurements to quantify cell health and apoptosis simultaneously. Image capture can be customized to occur at regular time intervals over several days. Users can analyze drug effects in individual Z-plane images or a Z Projection of serial images from multiple focal planes. Using masking, specific parameters of interest are calculated, such as PDO number, area, and fluorescence intensity. We provide proof-of-concept data demonstrating the effect of cytotoxic agents on cell health, apoptosis, and viability. This automated kinetic imaging platform can be expanded to other phenotypic readouts to understand diverse therapeutic effects in PDO models of cancer.


Assuntos
Apoptose , Neoplasias , Humanos , Membrana Basal , Bioensaio , Linhagem Celular , Organoides
2.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014133

RESUMO

Patient-derived organoid (PDO) models of cancer are a multifunctional research system that better recapitulates human disease as compared to cancer cell lines. PDO models can be generated by culturing patient tumor cells in extracellular basement membrane extracts (BME) and plating as three-dimensional domes. However, commercially available reagents that have been optimized for phenotypic assays in monolayer cultures often are not compatible with BME. Herein we describe a method to plate PDO models and assess drug effects using an automated live-cell imaging system. In addition, we apply fluorescent dyes that are compatible with kinetic measurements to simultaneously quantitate cell health and apoptosis. Image capture can be customized to occur at regular time intervals over several days. Users can analyze drug effects in individual Z-plane images or a Z Projection of serial images from multiple focal planes. Using masking, specific parameters of interest are calculated, such as PDO number, area, and fluorescence intensity. We provide proof-of-concept data demonstrating the effect of cytotoxic agents on cell health, apoptosis and viability. This automated kinetic imaging platform can be expanded to other phenotypic readouts to understand diverse therapeutic effects in PDO models of cancer.

3.
PLoS One ; 15(10): e0240454, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33057448

RESUMO

Chemotherapy-induced alopecia (CIA) represents the most distressing side-effect for cancer patients. Scalp cooling is currently the only treatment to combat CIA, yet little is known about its cytoprotective effects in human hair follicles (HF). We have previously established in vitro human keratinocyte models to study the effects of taxanes and anthracyclines routinely-used clinically and reported that cooling markedly-reduced or even completely-prevented cytotoxicity in a temperature dependent manner. Using these models (including HF-derived primary keratinocytes), we now demonstrate that cooling markedly attenuates cellular uptake of the anthracyclines doxorubicin and epirubicin to reduce or prevent drug-mediated human keratinocyte cytotoxicity. We show marked reduction in drug uptake and nuclear localization qualitatively by fluorescence microscopy. We have also devised a flow cytometry-based methodology that permitted semi-quantitative analysis of differences in drug uptake, which demonstrated that cooling can reduce drug uptake by up to ~8-fold in comparison to normal/physiological temperature, an effect that was temperature-dependent. Our results provide evidence that attenuation of cellular drug uptake represents at least one of the mechanisms underpinning the ability of cooling to rescue human keratinocytes from chemotherapy drug-cytotoxicity, thus supporting the clinical efficacy of scalp cooling.


Assuntos
Temperatura Baixa , Citoproteção , Doxorrubicina/efeitos adversos , Epirubicina/efeitos adversos , Folículo Piloso/metabolismo , Queratinócitos/metabolismo , Antibióticos Antineoplásicos/efeitos adversos , Células Cultivadas , Folículo Piloso/citologia , Folículo Piloso/efeitos dos fármacos , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos
4.
Oncologist ; 23(1): 84-96, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28951499

RESUMO

Chemotherapy-induced alopecia (CIA) is the most visibly distressing side effect of commonly administered chemotherapeutic agents. Because psychological health has huge relevance to lifestyle, diet, and self-esteem, it is important for clinicians to fully appreciate the psychological burden that CIA can place on patients. Here, for the first time to our knowledge, we provide a comprehensive review encompassing the molecular characteristics of the human hair follicle (HF), how different anticancer agents damage the HF to cause CIA, and subsequent HF pathophysiology, and we assess known and emerging prevention modalities that have aimed to reduce or prevent CIA. We argue that, at present, scalp cooling is the only safe and U.S. Food and Drug Administration-cleared modality available, and we highlight the extensive available clinical and experimental (biological) evidence for its efficacy. The likelihood of a patient that uses scalp cooling during chemotherapy maintaining enough hair to not require a wig is approximately 50%. This is despite different types of chemotherapy regimens, patient-specific differences, and possible lack of staff experience in effectively delivering scalp cooling. The increased use of scalp cooling and an understanding of how to deliver it most effectively to patients has enormous potential to ease the psychological burden of CIA, until other, more efficacious, equally safe treatments become available. IMPLICATIONS FOR PRACTICE: Chemotherapy-induced alopecia (CIA) represents perhaps the most distressing side effect of chemotherapeutic agents and is of huge concern to the majority of patients. Scalp cooling is currently the only safe option to combat CIA. Clinical and biological evidence suggests improvements can be made, including efficacy in delivering adequately low temperature to the scalp and patient-specific cap design. The increased use of scalp cooling, an understanding of how to deliver it most effectively, and biological evidence-based approaches to improve its efficacy have enormous potential to ease the psychological burden of CIA, as this could lead to improvements in treatment and patient quality-of-life.


Assuntos
Alopecia/prevenção & controle , Antineoplásicos/efeitos adversos , Hipotermia Induzida/métodos , Neoplasias/tratamento farmacológico , Alopecia/induzido quimicamente , Humanos , Prognóstico
5.
Bio Protoc ; 8(13): e2907, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34395739

RESUMO

One fundamental property of the TNR receptor (TNFR) family relates to how 'signal quality' (the extent of receptor ligation or cross-linking) influences the outcome of receptor ligation, for instance the induction of death in tumour cells. It is unequivocal that membrane-presented ligand (delivered to target cells via cell-surface presentation by co-culture with ligand-expressing third-party cells) induces a greater extent of carcinoma cell death in vitro in comparison to non-cross-linked agonists (agonistic antibodies and/or recombinant ligands). The CD40 receptor epitomises this fundamental property of TNF receptor-ligand interactions, as the extent of CD40 cross-linking dictates cell fate. Membrane-presented CD40 ligand (mCD40L), but not soluble agonists (e.g., agonistic anti-CD40 antibody), induces high level of pro-inflammatory cytokine secretion and causes extensive cell death (apoptosis) in malignant (but not normal) epithelial cells. In this article, we describe a co-culture system for the activation of CD40 by mCD40L and subsequent detection of various features of apoptosis (including cell membrane permeabilisation, DNA fragmentation, caspase activation) as well as detection of intracellular mediators of cell death (including adaptor proteins, pro-apoptotic kinases and reactive oxygen species, ROS).

6.
Int Wound J ; 14(1): 89-96, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26688157

RESUMO

Reactive oxygen species (ROS) play a pivotal role in the orchestration of the normal wound-healing response. They act as secondary messengers to many immunocytes and non-lymphoid cells, which are involved in the repair process, and appear to be important in coordinating the recruitment of lymphoid cells to the wound site and effective tissue repair. ROS also possess the ability to regulate the formation of blood vessels (angiogenesis) at the wound site and the optimal perfusion of blood into the wound-healing area. ROS act in the host's defence through phagocytes that induce an ROS burst onto the pathogens present in wounds, leading to their destruction, and during this period, excess ROS leakage into the surrounding environment has further bacteriostatic effects. In light of these important roles of ROS in wound healing and the continued quest for therapeutic strategies to treat wounds in general and chronic wounds, such as diabetic foot ulcers, venous and arterial leg ulcers and pressure ulcers in particular, the manipulation of ROS represents a promising avenue for improving wound-healing responses when they are stalled. This article presents a review of the evidence supporting the critical role of ROS in wound healing and infection control at the wound site, and some of the new emerging concepts associated with ROS modulation and its potential in improving wound healing are discussed.


Assuntos
Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/uso terapêutico , Cicatrização/fisiologia , Infecção dos Ferimentos/terapia , Ferimentos e Lesões/terapia , Humanos
7.
Cytokine Growth Factor Rev ; 26(6): 659-71, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26028499

RESUMO

The role of TNFR family members in regulating cell fate both in the immune system and in non-lymphoid tissues has been under extensive research for decades. Moreover, the ability of several family members (death receptors) to induce death (mainly via apoptosis) represents a promising target for cancer therapy. Many studies have focused mostly on death receptors such as TNFRI, Fas and TRAIL-R due to their strong pro-apoptotic potential. Yet, cell death can be triggered via non-classical death receptors, and the lymphotoxin (LT) system represents a very good example of such a TNFR subfamily. Here we provide a comprehensive review of intracellular signalling pathways and cellular responses to LT-specific signalling, and compare for the first time the LT system to other TNFRs, such as CD40. Our aim is to highlight that non-classical TNFR-TNFL dyads such as the LT system demonstrate more complex, cell-type and context-specific capabilities. Understanding these complexities will permit a better understanding of the biological mechanisms via which non-death domain-containing TNFRs induce cell death, but may also allow the design of better therapeutic strategies.


Assuntos
Linfotoxina-alfa/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Animais , Apoptose , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Morte Celular , Diferenciação Celular , Humanos , Linfotoxina-alfa/imunologia , Receptores do Fator de Necrose Tumoral/imunologia , Receptores do Fator de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/imunologia , Fatores de Necrose Tumoral/metabolismo
8.
Toxicol In Vitro ; 28(8): 1366-76, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25091624

RESUMO

A highly distressing side-effect of cancer chemotherapy is chemotherapy-induced alopecia (CIA). Scalp cooling remains the only treatment for CIA, yet there is no experimental evidence to support the cytoprotective capacity of cooling. We have established a series of in vitro models for the culture of human keratinocytes under conditions where they adopt a basal, highly-proliferative phenotype thus resembling the rapidly-dividing sub-population of native hair-matrix keratinocytes. Using a panel of chemotherapy drugs routinely used clinically (docetaxel, doxorubicin and the active metabolite of cyclophosphamide 4-OH-CP), we demonstrate that although these drugs are highly-cytotoxic, cooling can markedly reduce or completely inhibit drug cytotoxicity, in agreement with clinical observations. By contrast, we show that cytotoxicity caused by specific combinatorial drug treatments cannot be adequately attenuated by cooling, supporting data showing that such treatments do not always respond well to cooling clinically. Importantly, we provide evidence that the choice of temperature may be critical in determining the efficacy of cooling in rescuing cells from drug-mediated toxicity. Therefore, despite their reductive nature, these in vitro models have provided experimental evidence for the clinically-reported cytoprotective role of cooling and represent useful tools for future studies on the molecular mechanisms of cooling-mediated cytoprotection.


Assuntos
Antineoplásicos/farmacologia , Citoproteção , Queratinócitos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Temperatura Baixa , Folículo Piloso/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...