Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(17): 5606-5615, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37013996

RESUMO

The importance of electron deficient Tp ligands motivates the introduction of electron-withdrawing substituents into the scorpionate framework. Since perfluorophenyltris(pyrazol-1-yl)borate affects significant anodic shifts in half-cell potentials in their metal complexes relative those of phenyltris(pyrazol-1-yl)borate analogues, the tuning opportunities achieved using 3,4,5-trifluorophenyl- and 3,5-bis(trifluoromethyl)phenyl(pyrazol-1-yl)borates were explored. Bis(amino)boranes ((3,4,5-F)C6H2)B(NMe2)2 and ((3,5-CF3)C6H3)B(NMe2)2 are precursors to fluorinated tris(pyrazol-1-yl)phenylborates. Thallium salts of these scorpionates exhibit bridging asymmetric κ3-N,N,N coordination modes consistent with the reduced π-basicity of the fluorinated phenyl substituents relative those of other structurally characterized tris(pyrazol-1-yl)phenylborates. While a comparative analysis of the spectral and X-ray crystallographic data for classical Mo(0), Mo(II), Mn(I), Fe(II) and Cu(II) complexes of [((3,4,5-F)C6H2)Bpz3]- and [((3,5-CF3)C6H3)Bpz3]- could not differentiate these ligands with respect to their metal-based electronic impacts, cyclic voltammetry suggests that 3,4,5-trifluorophenyl- and 3,5-bis(trifluoromethyl)phenyl(pyrazol-1-yl)borates affect similar anodic shifts within their metal complexes, with coordination of [((3,5-CF3)C6H3)Bpz3]- rendering metal centers more difficult to oxidize, and sometimes even more difficult to oxidize than their [C6F5Bpz3]- analogues. These data suggest that the extent of phenyl substituent fluorination necessary to minimize metal center electron-richness in phenyltris(pyrazol-1-yl)borate complexes cannot be confidently predicted.

2.
Chem Sci ; 13(45): 13330-13337, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36507167

RESUMO

The complex {(TMEDA)2Li}{[Ti(N(TMS)2)2]2(µ-η2:η2-N2)2} (5-Li) is the only transition metal N2 complex ever reported with two side-on N2 adducts. In this report, the similarity of 5-Li to a new inverse sandwich toluene adduct {(PhMe)K}{[Ti(N(TMS)2)2]2(µ-PhMe)} (6-K) necessitated a re-examination of the structure of 5-Li. Through a reassessment of the original disordered crystal data of 5-Li and new independent syntheses brought about through revisitation of the original reaction conditions, 5-Li has been re-assigned as an inverse sandwich toluene adduct, {(TMEDA)2Li}{[Ti(N(TMS)2)2]2(µ-PhMe)} (6-Li). The original crystal data could be fitted almost equally well to structural solutions as either 5-Li or 6-Li, and this study highlights the importance of a holistic examination of modeled data and the need for secondary/complementary analytical methods in paramagnetic inorganic syntheses, especially when presenting unique and unexpected results. In addition, further examination of reduction reactions of Ti[N(TMS)2]3 and [(TMS)2N]2TiCl(THF) in the presence of KC8 revealed rich solvent- and counterion-dependent chemistry, including several degrees of N2 activation (bridging nitride complexes, terminal bridging N2 complexes) as well as ligand C-H activation.

3.
Nat Chem ; 14(8): 877-883, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35760958

RESUMO

Carbon dioxide is inexpensive and abundant, and its prevalence as waste makes it attractive as a sustainable chemical feedstock. Although there are examples of copolymerizations of CO2 with high-energy monomers, the direct copolymerization of CO2 with olefins has not been reported. Here an alternative route to functionalizable, recyclable polyesters derived from CO2, butadiene and hydrogen via an intermediary lactone, 3-ethyl-6-vinyltetrahydro-2H-pyran-2-one, is described. Catalytic ring-opening polymerization of the lactone by 1,5,7-triazabicyclo[4.4.0]dec-5-ene yields polyesters with molar masses up to 13.6 kg mol-1 and pendent vinyl side chains that can undergo post-polymerization functionalization. The polymer has a low ceiling temperature of 138 °C, allowing for facile chemical recycling, and is inherently biodegradable under aerobic aqueous conditions (OECD-301B protocol). These results show that a well-defined polyester can be derived from CO2, olefins and hydrogen, expanding access to new polymer feedstocks that were once considered unfeasible.


Assuntos
Butadienos , Poliésteres , Dióxido de Carbono/química , Hidrogênio , Lactonas/química , Poliésteres/química
4.
J Am Chem Soc ; 142(9): 4390-4399, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32043879

RESUMO

Pyrazoles are an important class of heterocycles found in a wide range of bioactive compounds and pharmaceuticals. Pyrazole synthesis often requires hydrazine or related reagents where an intact N-N bond is conservatively installed into a pyrazole precursor fragment. Herein, we report the multicomponent oxidative coupling of alkynes, nitriles, and Ti imido complexes for the synthesis of multisubstituted pyrazoles. This modular method avoids potentially hazardous reagents like hydrazine, instead forming the N-N bond in the final step via oxidation-induced coupling on Ti. The mechanism of this transformation has been studied in-depth through stoichiometric reactions of the key diazatitanacyclohexadiene intermediate, which can be accessed via multicomponent coupling of Ti imidos with nitriles and alkynes, ring opening of 2-imino-2H-azirines, or direct metalation of 4-azadiene-1-amine derivatives. The critical transformation in this reaction is the 2-electron oxidation-induced N-N coupling on Ti. This is a rare example of formal N-N coupling on a metal center, which likely occurs through an electrocyclic mechanism analogous to a Nazarov cyclization. Conveniently, these 2-electron-oxidized diazatitanacyclohexadiene intermediates can be accessed via disproportionation of the 1-electron-oxidized species, which allows utilization of weak oxidants such as TEMPO.


Assuntos
Alcinos/química , Complexos de Coordenação/química , Nitrilas/química , Pirazóis/síntese química , Ciclização , Modelos Químicos , Oxirredução , Titânio/química
5.
Organometallics ; 39(21): 3771-3774, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34321708

RESUMO

Simple Ti amide complexes are shown to act as sources for masked TiII intermediates via several pathways, as demonstrated through the investigation of a unique Ti-catalyzed nitrene-coupled transfer hydrogenation of 3-hexyne. This reaction proceeds through reduction of azobenzene by a masked TiII catalyst, wherein both amines and 3-hexyne can serve as the hydrogen source/reductant for Ti by forming putative titanaziridines via ß-H abstraction or putative titanacyclopentynes via protonolysis, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...