Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutr Metab (Lond) ; 15: 69, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30305835

RESUMO

BACKGROUND: Metabolic Syndrom has become a public health problem. It mainly results from the increased consumption of fat and sugar. In this context, the benefits of personalized moderate exercise training were investigated on a metabolic syndrome male wistar rat model food with fructose drinking water (20-25% w/v). Different markers including body weight, metabolic measurements, blood biochemistry related to metabolic syndrome complications have been evaluated. METHODS: Male Wistar rats were randomly allocated to 4 groups: control (sedentary (C, n = 8) and exercise trained (Ex, n = 8)), fructose fed (sedentary (FF, n = 8) and exercise trained fructose fed rats (ExFF, n = 10)). ExFF and Ex rats were trained at moderate intensity during the last 6 weeks of the 12 weeks-long protocol of fructose enriched water. Metabolic control was determined by measuring body weight, fasting blood glucose, HOMA 2-IR, HIRI, MISI, leptin, adiponectin, triglyceridemia and hepatic dysfunction. RESULTS: After 12 weeks of fructose enriched diet, rats displayed on elevated fasting glycaemia and insulin resistance. A reduced food intake, as well as increased body weight, total calorie intake and heart weight were also observed in FF group. Concerning biochemical markers, theoretical creatinine clearance, TG levels and ASAT/ALAT ratio were also affected, without hepatic steatosis. Six weeks of 300 min/week of moderate exercise training have significantly improved overweight, fasting glycaemia, HOMA 2-IR, MISI without modify HIRI. Exercise also decreased the plasma levels of leptin, adiponectin and the ratio leptin/adiponectin. Regarding liver function and dyslipidemia, the results were less clear as the effects of exercise and fructose-enriched water interact together, and, sometimes counteract each other. CONCLUSION: Our results indicated that positive health effects were achieved through a personalized moderate training of 300 min per week (1 h/day and 5 days/week) for 6 weeks. Therefore, regular practice of aerobic physical exercise is an essential triggering factor to attenuate MetS disorders induced by excessive fructose consumption.

2.
Front Physiol ; 9: 64, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29545754

RESUMO

Introduction: Commercial divers, high altitude pilots, and astronauts are exposed to some inherent risk of decompression sickness (DCS), though the mechanisms that trigger are still unclear. It has been previously showed that diving may induce increased levels of serum angiotensin converting enzyme. The renin angiotensin aldosterone system (RAAS) is one of the most important regulators of blood pressure and fluid volume. The purpose of the present study was to control the influence of angiotensin II on the appearance of DCS. Methods: Sprague Dawley rats have been pre-treated with inhibitor of angiotensin II receptor type 1 (losartan; 10 mg/kg), angiotensin-converting enzyme (ACE) inhibitor (enalapril; 10 mg/kg), and calcium-entry blocker (nifedipine; 20 mg/kg). The experimental groups were treated for 4 weeks before exposure to hyperbaric pressure while controls were not treated. Seventy-five rats were subjected to a simulated dive at 1000 kPa absolute pressure for 45 min before starting decompression. Clinical assessment took place over a period of 60 min after surfacing. Blood samples were collected for measurements of TBARS, interleukin 6 (IL-6), angiotensin II (ANG II) and ACE. Results: The diving protocol induced 60% DCS in non-treated animals. This ratio was significantly decreased after treatment with enalapril, but not other vasoactive drugs. Enalapril did not change ANG II or ACE concentration, while losartant decreased post dive level of ACE but not ANG II. None of the treatment modified the effect of diving on TBARS and IL-6 values. Conclusion: Results suggests that the rennin angiotensin system is involved in a process of triggering DCS but this has to be further investigated. However, a vasorelaxation mediated process, which potentially could increase the load of inert gas during hyperbaric exposure, and antioxidant properties were excluded by our results.

3.
Biomed Res Int ; 2017: 2494067, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28497040

RESUMO

Increased sugar consumption, especially fructose, is strongly related to the development of type 2 diabetes (T2D) and metabolic syndrome. The aim of this study was to evaluate long term effects of fructose supplementation on Wistar rats. Three-week-old male rats were randomly divided into 2 groups: control (C; n = 14) and fructose fed (FF; n = 18), with a fructose enriched drink (20-25% w/v fructose in water) for 21 weeks. Systolic blood pressure, fasting glycemia, and bodyweight were regularly measured. Glucose tolerance was evaluated three times using an oral glucose tolerance test. Insulin levels were measured concomitantly and insulin resistance markers were evaluated (HOMA 2-IR, Insulin Sensitivity Index for glycemia (ISI-gly)). Lipids profile was evaluated on plasma. This fructose supplementation resulted in the early induction of hypertension without renal failure (stable theoretical creatinine clearance) and in the progressive development of fasting hyperglycemia and insulin resistance (higher HOMA 2-IR, lower ISI-gly) without modification of glucose tolerance. FF rats presented dyslipidemia (higher plasma triglycerides) and early sign of liver malfunction (higher liver weight). Although abdominal fat weight was increased in FF rats, no significant overweight was found. In Wistar rats, 21 weeks of fructose supplementation induced a metabolic syndrome (hypertension, insulin resistance, and dyslipidemia) but not T2D.


Assuntos
Carboidratos da Dieta/efeitos adversos , Frutose/efeitos adversos , Hipertensão , Síndrome Metabólica , Animais , Carboidratos da Dieta/farmacologia , Frutose/farmacologia , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/patologia , Hipertensão/fisiopatologia , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Síndrome Metabólica/fisiopatologia , Ratos , Ratos Wistar
4.
PLoS One ; 11(1): e0146821, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26799836

RESUMO

PURPOSE: The aim of this study was to characterize short and medium-lasting effects of fructose supplementation on young Wistar rats. The diet was similar to actual human consumption. METHODS: Three week old male rats were randomly divided into 2 groups: control (C; n = 16), fructose fed (FF; n = 16) with a fructose enriched drink for 6 or 12 weeks. Bodyweight, fasting glycemia and systolic blood pressure were monitored. Glucose tolerance was evaluated using an oral glucose tolerance test. Insulinemia was measured concomitantly and enable us to calculate insulin resistance markers (HOMA-IR, Insulin Sensitivity Index for glycemia: ISI-gly). Blood chemistry analyses were performed. RESULTS: After six weeks of fructose supplementation, rats were not overweight but presented increased fasting glycemia, reduced glucose tolerance, and lower insulin sensitivity compared to control group. Systolic blood pressure and heart weight were also increased without any change in renal function (theoretical creatinine clearance). After twelve weeks of fructose supplementation, FF rats had increased bodyweight and presented insulin resistance (higher HOMA-IR, lower ISI-gly). Rats also presented higher heart volume and lower ASAT/ALAT ratio (presumed liver lesion). Surprisingly, the Total Cholesterol/Triglycerides ratio was increased only after six weeks of fructose supplementation, predicting a higher LDL presence and thus a higher risk of developing cardiovascular disease. This risk was no longer present after twelve weeks of a fructose enriched diet. CONCLUSION: On young Wistar rats, six weeks of fructose supplementation is sufficient to induce signs of metabolic syndrome. After twelve weeks of fructose enriched diet, rats are insulin resistant. This model enabled us to study longitudinally the early development of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/induzido quimicamente , Suplementos Nutricionais/efeitos adversos , Frutose/efeitos adversos , Resistência à Insulina/fisiologia , Síndrome Metabólica/induzido quimicamente , Animais , Glicemia/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Dieta , Frutose/metabolismo , Frutose/farmacologia , Teste de Tolerância a Glucose , Índice Glicêmico/efeitos dos fármacos , Insulina/sangue , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar , Aumento de Peso/efeitos dos fármacos
5.
Redox Rep ; 20(2): 60-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25242065

RESUMO

OBJECTIVE: This study aimed to explore the effect of endurance training on oxidative parameters and mitochondrial function in gastrocnemius and heart muscle. METHODS: Male Wistar rats were trained by running for 6 weeks. In vitro measurements of the rates of hydroxyl radical ((•)OH) production, oxygen consumption (in either the absence, basal rate (V0), or the presence, maximal rate (Vmax), of adenosine diphosphate), and adenosine triphosphate (ATP) production were made simultaneously in permeabilized fibers. The mitochondrial function was explored after exposure or non-exposure to an in vitro generator system of reactive oxygen species (ROS). RESULTS: Vmax was not affected by training, but V0 decreased. In conditions of maximal mitochondrial functioning, an increase in ATP rate and a decrease in (•)OH production occurred simultaneously. In vitro ROS exposure disturbed mitochondrial function, but training modified the vulnerability of Vmax and ATP rate to ROS in different ways. DISCUSSION: We hypothesize that the part of Vmax devoted to proton leakage was decreased in trained rats, consequently improving ATP synthesis. The data suggest that, after training, there is more efficient use of electrons in respiratory chain energy production, rather than a greater ROS scavenging capacity.


Assuntos
Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Condicionamento Físico Animal/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/metabolismo , Enzimas/metabolismo , Masculino , Malondialdeído/metabolismo , Músculo Esquelético/fisiologia , Oxigênio/metabolismo , Consumo de Oxigênio , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...